博碩士論文 87622005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.117.158.47
姓名 劉昱志(Yu-chi Liu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 應用自由基誘導物AAPH模擬氧化逆境: 研究大豆之抗氧化劑的生化防禦系統
(Biochemical studies of antioxidative defense systems in soybean by a free radical initiator 2,2'-azobis(2-amidinopropane) hydrochloride)
相關論文
★ 應用自由基誘導物2,2’-Azobis (2-amidinopropane) hydrochloride (AAPH)模擬氧化逆境:研究大豆之抗氧化酵素Superoxide dismutase (SOD)的基因表現★ 三氯乙烯及四氯乙烯對中國倉鼠卵巢細胞的毒性研究
★ 甘藷桃園二號對鹽分逆境之抗氧化物質的生化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環境的變化對植物的生長與發育有很深的影響。為了減低環境逆境的影響,植物發展出許多清除自由基的防禦機制,其中包括本研究室著重的ascorbate-glutathione循環。本研究是利用自由基誘導劑2,2’-azobis(2-amidinopropane) hydrochloride (AAPH)來誘發大豆 (Glycine max cv. Essex)之氧化逆境 (oxidative stress),並研究其生理及生化上的反應。從本實驗結果中發現,在酵素性抗氧化物質部分,有一部份酵素如superoxide dismutase、ascorbate peroxidase、catalase及guaiacol peroxidase,其酵素活性隨時間的增加有上升的趨勢;另一部份如dehydroascorbate reductase及glutathione reductase之酵素活性則有下降的趨勢。利用ascorbate peroxidase活性電泳來研究其同功?活性之變化,其結果與酵素活性實驗相類似,但是並未能夠很清楚的辨認同功?的作用。關於非酵素性抗氧化物質之部分,如total ascorbate及total glutathione (還原態+氧化態)之含量隨著時間增加有上升的趨勢;然而,氧化態的ascorbate 及glutathione卻無明顯的增加。由此研究得知,將50 mM AAPH噴灑於大豆植株表面確實可以誘發植物一部份之抗氧化機制;故推測AAPH可能使用於模擬植物於逆境中生長。
摘要(英) The growth and development of plants are strongly influenced by different environmental stresses that can be initiated by oxidative stress. To cope with these stresses, plants have could develop a series of defense mechanisms and detoxification systems including ascorbate-glutathione cycle. The ascorbate-glutathione cycle is one of the most important antioxidative defense systems being in discussed plants. In this study, we investigated the physiological and biochemical responses of soybean (Glycine max cv. Essex), which is an ozone-tolerance cultivar, under oxidative stress initiated by azo compounds, 2,2’-azobis(2-amidinopropane) hydrochloride (AAPH). Results showed that 50 mM AAPH could cause visible injury on leaf tissues in soybean, reduced total chlorophyll contents and increased the levels of lipid peroxidation. Results also showed a slightly increase in activities of enzymes involved in detoxifying oxidative stress; such as ascorbate peroxidase (APX), superoxide dismutase, catalase and guaiacol peroxidase during the different incubation time. However, the activities of dehydroascorbate reductase and glutathione reductase were decreased. The APX activity in gel electrophoresis studies confirmed the enzyme activity data, but the activities of isozymes were not clearly identified. The levels of total ascorbate and glutathione contents were enhanced in soybean leaves when treated with 50 mM AAPH. However, the oxidized forms of ascorbate and glutathione contents were not significantly increased. This study suggests that some antioxidants involved in ascorbate-glutathione cycle in soybean can be induced by spraying 50 mM AAPH, and this technique could be used to screen the sensitivity of plants to environmental stress.
關鍵字(中) ★ 脂質過氧化反應
★ AAPH
★ 抗壞血酸-麩胱咁汰循環
★ 大豆
★ 氧化逆境
關鍵字(英) ★ 2'-azobis(2-amidinopropane) hydrochloride
★ ascorbate-glutathione cycle
★ soybean
★ oxidative stress
★ lipid peroxidation
論文目次 中文摘要…………………………………………………………1
英文摘要…………………………………………………………2
壹、前言…………………………………………………………3
貳、材料與方法..………………………………………………11
參、結果………………………………………………………22
肆、討論………………………………………………………26
伍、參考文獻…………………………………………………29
陸、圖…………………………………………………………37
圖一、葉綠體內超氧之形成及ascorbate-glutathione循環………37
圖二、大豆在植物生長箱之生長情形……………………………38
圖三、大豆處理50 mM AAPH及二次水後72小時至120小時之比較圖……39
圖四、大豆處理50 mM AAPH後total chlorophyll含量變化圖…40
圖五、大豆處理50 mM AAPH後MDA含量變化圖……………41
圖六、大豆處理50 mM AAPH後soluble protein含量變化圖…42
圖七、大豆處理50 mM AAPH後superoxide dismutase活性變化圖……43
圖八、大豆處理50 mM AAPH後ascorbate peroxidase活性變化圖……44
圖九、大豆處理50 mM AAPH後dehydroascorbate reductase活性變化圖 …………45
圖十、大豆處理50 mM AAPH後glutathione reductase活性變化圖……46
圖十一、大豆處理50 mM AAPH後catalase活性變化圖…………47
圖十二、大豆處理50 mM AAPH後guaiacol peroxidase活性變化圖……48
圖十三、大豆處理50 mM AAPH後total ascorbate含量變化圖…49
圖十四、大豆處理50 mM AAPH後還原態與氧化態ascorbate之比較圖…50
圖十五、大豆處理50 mM AAPH後total glutathione含量變化圖……51
圖十六、大豆處理50 mM AAPH後還原態與氧化態glutathione之比較圖…………52
圖十七、大豆處理50 mM AAPH後之APX活性電泳圖…………53
參考文獻 巫盈忠. (2000) Personal communacation.
孫安迪. (1999) 再造免疫力(2)-抗病防癌秘訣大公開。自然風文化事業股份公司出版。ISBN 957-97734-3-2.
Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
Allen, R. D. (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054.
Alscher, R. G., Donahue, J. L. and Cramer, C. L. (1997) Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 100: 224-233.
Anderson, J. V., Chevone, B. I. and Hess, J. L. (1992) Seasonal variation in antioxidant system of eastern white pine needles. Plant Physiol. 98: 501-508.
Apostol, I., Heinstein, P. F. and Low, P. S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 90: 109-116.
Asada, K. (1984) Chloroplast: formation of active oxygen and its scavenging. Methods Enzymol. 105: 422-429.
Asada, K. (1992) Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235-241.
Asada, K. (1994) Production and action of active oxygen species in photosynthetic tissues, in Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. (C.H. Foyer, P.M. Mullineaux eds.) CRC Press, Boca Raton, FL, pp. 77-104.
Barcley, L. R. C., Cameron, R. C., Forrest, B. J., Locke, S. J., Nigam, R. and Vinqvist, M. R. (1990) Cholesterol: free radical peroxidation and transfer into phospholipid membranes. Biochim. Biophys. Acta 1047: 255-263.
Bauerova, K. and Bezek, A. (1999) Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen. Physiol. Biophys. Spec No.: 15-20.
Bowler, C., Van Montagu, M. and Inzé, D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116.
Bradford, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein ultilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Cribb, A. E., Ledder, J. S. and Spielberg, S. P. (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5’-dithio(2-nitrobenzoic acid). Anal. Biochem. 183: 195-196.
Chaoui, A., Mazhoudi, S., Ghorbal, H. and Ferjani, E. E. (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme in bean (Phaseolus vulgaris L.) Plant Sci. 127: 139-147.
Dean, R. T., Hunt, J. V., Grant, A. J., Yamamoto, Y. and Niki, E. (1991) Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic. Biol. Med. 11: 161-168.
Dodge, A. D. (1971) The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour. 30: 130.
Dooley, M. M., Sano, N., Kawashima, H. and Nakamura, T. (1990) Effects of 2,2’-azobis(2-amidinopropane) hydrochloride in vivo and protection by vitamin E. Free Radic. Biol. Med. 9: 199-204.
Foyer, C. H., Descourviéres, P. and Kunert, K. J. (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17: 507-523.
Foyer, C. H. and Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25.
Gossett, D. R., Millhollon, E. P. and Lucas, M. C. (1994) Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34: 706-714.
Hager, H., Ueda, N. and Shah, S. V. (1996) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am. J. Physiol. 271: F209-F215.
Hale, M. G. and Orcutt, D. M. (1987) Terminology, in The Physiology of Plants Under Stress. John Weily & Sons, Inc., pp.1-4. ISBN 0-471-88997-0.
Hausladen, A. and Alscher, R. G. (1993) Glutathione, in Antioxidants in Higher Plants (R. G. Alscher and J. L. Hess, eds.). CRC press, Boca Raton, FL., pp.1-30. ISBN 0-8493-6328-4.
Heath, R. L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
Henkow, L., Strid, A., Berglund, T., Rydström, J. and Ohlsson, A. B. (1996) Alternation of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2’-azobis(2-amidinopropane) dihydrochloride. Physiol. Plant. 96: 6-12.
Hodges, D. M., Andrews, C. J., Johnson, D. A. and Hamilton, R. I. (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plant. 98: 685-692.
Kaminaka, H., Morita, S., Tokumoto, M., Masumura, T. and Tanaka, K. (1999) Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radic. Res. Suppl: S219-225.
Kelly, F. J. (1998) Use of antioxidants in the prevention and treatment of disease. J. Int. Fed. Clin. Chem. 10: 21-23.
Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680-685.
Law, M. Y., Charles, S. A. and Halliwell, B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem. J. 210: 899-903.
Lee, E. H. and Bennett, J. (1982) Superoxide dismutase: A possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris). Plant Physiol. 69: 1444-1449.
Lee, E. H., Jersey, J. A., Gifford, C. and Bennett, J. (1984) Differential ozone tolerance in soybean and snapbeans: Analysis of ascorbic acid in O3-susceptible and O3-resistant cultivars by high-performance liquid chromatography. Environ. Exp. Bot. 24: 331-341.
Lee, E. H. (1999) Early detection, mechanism of tolerance, and amelioration of ozone stress in crop plant, in Environmental Pollution and Plant Responses. (S.B. Agrawal and M. Agrawal, eds.) chapt. 11. pp. 203-222. Lewis Publ., Baco Raton, CRC Press LLC.
Loschen, G., Azzi, A. and Flohe, L. (1973) Motichondrial H2O2 formation: Relationship with energy conversion. FEBS Lett. 33: 84-88.
Loschen, G., Azzi, A., Richter, C. and Flohe, L. (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68-72.
Mazhoudi, S., Chaoui, A., Ghorbal, M. H. and Ferjani, E. E. (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill). Plant Sci. 127: 129-137.
Mehler, A. H. (1951) Studies on reactions of illuminated chloroplast. 10. Mechanics of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33: 65-77.
Mishra, N. P., Fatma, T. and Singhal, G. S. (1995) Development of antioxidative defense system of wheat seedlings in response to high light. Physiol. Plant. 95: 77-82.
Mittler, R. and Zilinskas, B. A. (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 212: 540-546.
Niki, E., Komuro, E., Takahashi, M., Urano, S., Ito, E. and Terao, K. (1988) Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J. Biol. Chem. 263: 19809-19814.
Niki, E. (1990) Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 186: 100-108.
Niyogi, K. K. (1999) Photoprotection revisited: gentic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333-359.
Ohlsson, A. B., Berglund, T., Komlos, P. and Rydström, J. (1995) Plant defense metabolism is increased by the free radical-generating compound AAPH. Free Radic. Biol. Med. 19: 319-327.
Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clinica Chimica Acta 103: 259-268.
Perl-Treves, R. and Galun, E. (1991) The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17: 745-760.
Prasad, K. V. S. K., Paradha Saradhi, P. and Sharmila, P. (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot. 42: 1-10.
Rabinowitch, H. D. and Sklan, D. (1980) Superoxide dismutase: A possible protective agent against sunscald in tomatoes. Planta 148: 162-167.
Scandalio, J. G. (1997) Molecular genetics of superoxide dismutases in plants, in Oxidative Stress and the Molecular Biology of Antioxidant Defenses. (J.G. Scandalio, eds.) Cold Spring Harbor Laboratory Press, pp.527-568. ISBN 0-87969-502-1.
Tanaka, K. and Sugahara, K. (1980) Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase with SO2 fumigation. Plant Cell Physiol. 21: 601-611.
Tsang, E. W., Bowler, C., Herouart, D., Van Camp, W. and Inzé, D. (1991) Differential regulation of superoxide dismutase in plants exposed to environmental stress. Plant Cell 3: 783-792.
Tuomainen, J., Pellinen, R., Roy, S., Kiiskinen, M., Eloranta, T., Karjalainen, R. and Kangasjärvi, J. (1996) Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level. J. Plant Physiol. 148: 179-188.
Winston, G. W. (1990) Physiochemical basis for free radical formation in cells: Production and defense, in Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Wiley-Liss, Inc., pp. 57-86. ISBN 0-471-56810-4.
Wintermans, J. F. G. M. and De Mots, A. (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109: 448-453.
Yoshimura, K., Yabuta, Y., Ishikawa, T. and Shigeoka, S. (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123: 223-233.
指導教授 李賢淇 審核日期 2000-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明