博碩士論文 87622008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.16.47.65
姓名 許原彰(Yuan-Chang Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 溫度對於Pseudomonas putida鄰苯二酚加氧酵素之活性與結構的效應
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在了解SH1菌株中不同的鄰苯二酚加氧酵素生化特性後,我們以C23Onap(SH1)和已知?的分解菌P. putida NCIB9816-4所純化出之C23Onap(NCIB9816-4)研究溫度對酵素活性的影響;同時根據小角度中子散射(small angle neutron scattering, SANS)實驗,在不同溫度下研究酵素在水溶液中的結構,如分子大小與四級結構等。從生化實驗顯示C23Onap(SH1)是由4個相同的次單元(subunit)所組成,最適催化溫度為50℃;在50℃時,C23Onap(SH1)活性半衰期不及1小時而C23Onap(NCIB9816-4)半衰期則為4小時,在相同溫度但無氧條件下,C23Onap(SH1)之活性半衰期增為3小時;此二酵素之活性分別在55℃與60℃急速下降(1小時後為15%和9%)。從SANS實驗所得結果顯示,在5~55℃時,二者分子大小皆約為60 Å,但C23Onap(SH1)在57℃、C23Onap(NCIB9816-4)在62℃時分子大小開始變大,當溫度升至80℃間時二者分子大小分別增為130 Å與120 Å,且即使回溫至5℃後酵素分子大小也不會回復,顯示酵素結構是不可逆性地被破壞;溫度對此二酵素的效應在催化活性與小角度中子散射實驗結果裡都顯示C23Onap(NCIB9816-4)比C23Onap(SH1)高出5℃的熱穩定性。
此計畫未來研究方向將尋找影響酵素熱穩定性與結構中每個subunit相互連接處之胺基酸,並以蛋白質工程進行酵素之改良。
摘要(英) The specific activities of C23Os induced by 3 isomers of cresol in crude cell extracts from P. putida SH1 was determined towards to catechol and and catabolic derivatives, 3-methylcatechol, 4- methylcatechol and 4-chrolocatechol. It showed the same substrate specificity, suggesting this strain converts o-, m-, and p-cresol to catechol probably by the same C23O.
The thermal effect on C23O was then observed by the stability of activity as well as conformation change at various temperatures. The optimally catalytic temperature of C23Onap(SH1) was at 50℃ in 20 mM phosphate buffer, pH 7.5 but the half-life of C23Onap(SH1) at this temperature was 30 min under aerobic condition. The half-life of another C23O, C23Onap(NCIB9816-4) isolated from a known naphthalene-degrading bacterium, P. putida NCIB9816-4, was 4 hour under the same condition. It indicated that C23Onap(NCIB9816-4) was more stable than C23Onap(SH1). The structural conformation of the enzymes in solution was analyzed by using small-angle neutron scattering (SANS) technique. SANS measurements revealed distinct changes on the size of the C23Onap(SH1) between 57 and 80°C, where the size can not be restored even the temperature was then reduced. At 80°C, the size of the enzyme becomes more than twice of its native one. Accordingly, the enzyme starts to denature at 57°C and the structure was destroyed as temperature reaches 80°C. Another enzyme, C23Onap(NCIB9816-4), was also studied under the same experimental conditions. This enzyme shows slightly higher heat stability, about 5°C, in both catalytic activity and conformation.
In the meantime, the factors influencing thermal stability, including Fe2+, acetone, ethanol, and starch, on C23O were further investigated by using C23O purified from p. putida mt-2.
關鍵字(中) ★ 鄰苯二酚加氧酵素
★ 熱穩定性
★ 小角度中子散射
關鍵字(英) ★ Pseudomonas putida
★ catechol 2
★ 3-dioxygenase
★ SANS
論文目次 中文摘要……………………………………………………I
英文摘要……………………………………………………IV
目錄…………………………………………………………VI
圖目錄………………………………………………………VII
表目錄………………………………………………………VI
壹、緒論……………………………………………………1
一、芳香族化合物及微生物分解…………………………1
二、鄰苯二酚加氧酵素之特性……………………………2
三、鄰苯二酚加氧酵素之結構……………………………4
四、鄰苯二酚加氧酵素之熱穩定性………………………6
五、小角度中子散射於酵素結構之應用…………………7
六、研究背景與目的………………………………………9
貳、材料與方法……………………………………………13
一、微生物培養……………………………………………13
二、鄰苯二酚加氧酵素活性測定…………………………15
三、蛋白質測定……………………………………………16
四、鄰苯二酚加氧酵素之純化……………………………17
五、分子量測定……………………………………………20
六、鄰苯二酚加氧酵素熱穩定性測定……………………21
七、小角度中子散射………………………………………22
八、酵素穩定因子測試……………………………………22
九、N端胺基酸定序…………………….…………………23
十、化學藥品………………………………………………23
十一、儀器設備……………………………………………24
參、結果……………………………………………………26
一、C23Os N端胺基酸序列………………….……………26
二、C23O活性分析…………………………………………26
三、C23Os之純化………………………………….………28
四、溫度對C23Os活性之效應………………….…………31
五、溫度對C23Os結構之效應……….……………………33
六、C23O穩定因子測試……………………………………34
肆、討論……………………………………………………35
伍、參考文獻………………………………………………41
陸、圖………………………………………………………47
柒、表………………………………………………………68
參考文獻 林春志. 1997. Pseudomonas putida SH1分解芳香族碳氫化合物之研究. 國立中央大學生命科學研究所碩士論文.
楊璧如. 1997. 鄰苯二酚加氧酵素的基因選殖與分析. 國立中央大學生命科學研究所碩士論文.
姜福慧. 1998. Pseudomonas putida SH1中鄰苯二酚加氧酵素的純化與特性分析. 國立中央大學生命科學研究所碩士論文.
李祖霖. 1999. Pseudomonas putida SH1中鄰苯二酚加氧酵素的純化與特性分析(II). 國立中央大學生命科學研究所碩士論文.
羅淑如. 1999. Pseudomonas putida SH1中誘發苯環化合物代謝之研究. 國立中央大學生命科學研究所碩士論文.
Bergdoll, M., L. D. Eltis, A. D. Cameron, P. Dumas, and J. T. Bolin. 1998. All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci. 7:1667-1670.
Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Broderick, J. B. and O’Halloran, T. V. 1991. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistr. 30:7349-7358.
Caldwell, D. R. 1995. Cabolic metabolism, p. 83-115. In microbial physiology and metabolism. D. R. (ed.), Caldwell, W. C. Brown Communications. Inc., U. S. A.
Cerniglia, C. E. and M. A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. p. 41-68. In Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Boca Raton, FL.
Dessen, P., S. Blanquent, G. Zaccai, and B. Jacrot. 1978. Antico-operative binding or initiator transfer RNA met to methionyl-transfer RNA synthetase for Escherichia coli: neutron scattering studies. J. Mol. Biol. 126:293-313.
Eltis, L. D. and J. T. Bolin. 1996. Evolutionary relationships among extradiol dioxygenases. J. Bacteriol. 178:5930-5937.
Eltis, L. D., B. Hofmann, H.-J. Hecht, H. Lunsdorf and K. N. Timmis. 1993. Purification and crystallization of 2,3-dihydroxyv]biphenyl 1,2-dioxygenase. J. Biol. Chem. 268:2727-2732.
Fernandez-Lafuente, R., J. M. Guisan, S. Ali, and D. Cowan. 2000. Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme Microb. Technol. 26:568-573.
Fuchs G., M. S. Mohamed, U. Altenschmidt, J. Koch, A. Lack, R.
Gassner, G. T., D. P. Ballou, G. A. Landrum, and J. W. Whittaker. 1993. Magnetic circular dichroism studies on the mononuclear ferrous active site of phthalate dioxygenase from Pseudomas cepacia show a change of ligation state on substrate binding. Biochemistry. 32:4820-4825.
Guinier, A. 1939. Ann. Phys. 12:161
Han S., L. D. Eltis, K. N. Timmis, S. W. Muchmore, and J. T. Bolin. 1995. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading Pseudomonad. Science 270:976-980.
Harayama, S., and M. Kok. 1992.Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46:565-601.
Hayaishi, O., and Z. Hashimoto. 1950. Pyrocatechase. A new enzyme catalyzing oxidative breakdown of pyrocatechin. J. Biochem. 37:317-374.
Kataoka, M., H. Kamikubo, J. Yunoki, F. Tokunaga, T. Kanaya, Y. Izumi, and K. Shibata. 1999. Low energy dynamics of globular proteins studied by inelastic neutron scattering. J. Phys. Chem. Solids 60:1285-1289.
Kikuchi, M., K. Ohnishi, and S. Harayama. 1999. Novel family shuffling methods for the in vitro evolution of enzymes. Gene. 236:159-167.
Kita, A., S. Kita, I. Fujisawa, K. Inaka, T. Ishida, K. Horiike, M. Nozaki and K. Miki. 1999. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure. 7:25-34.
Laemmli, U. K. 1970. Cleavage of structure proteins during the aseembly of the head of bacteriophage T4. Nature 227:680
Lauber, J. D. 1986. Disposal and destruction of waste PCBs. p. 84-149 In PCBs and the Environment. Ed. J. S. Waid. Vol. III. CRC Press, Boca Raton, FL..
Lehmann, M. S., G. Zaccai. 1984. Neutron small- angle scattering studies of ribonuclease in mixed aqueous solutions and determination of the preferentially bound water. Biochem. 23:1939-1942.
Lin, C.-C., F.-H. Chiang, and S.-L. Huang. 1997. Microbiological and biochemical studies of novel aromatic hydrocarbon-degrading Pseudomonas, p.239. Abstract of the twelfth Joint Annual Conference of Biomedical Sciences.
Milo, R. E., F. M. Duffner and R. Muller. 1999. Catechol 2,3-dioxygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability. Extremophiles. 3:185-190.
Mutzel, A., U. M. Reinscheid, G. Antranikian and R. Muller. 1996. Isolation and characterization of a thermophilic bacillus strain, that degrades phenol and cresols as sole carbon source at 70℃. Appl. Microbiol. Biotechnol. 46:593-596.
Nakai, C., K. Hori, H. Kagamiyama, T. Nakazawa, and M. Nozaki. 1983. Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J. Biol. Chem. 258:2916-2922.
Nakai, C., T. Nakazawa, and M. Nozaki. 1988. Purification and properties of catechol 1,2-dioxygenase(pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch. Biochem. Biophy. 267:701-713.
Nakazawa, T. and T. Yokota. 1973. Benzoate metabolism in Pseudomonas putida mt-2:demonstration of two benzoate pathways. J. Bacteriol. 115:262-267.
Niimura, N. 1999. Neutron structural biology. J. Phys. Chem. Solids 60:1256-1271.
Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi. 1968. Metapyrocatechase J. Biol. Chem. 243:2682-2690.
Nozaki, M., T. Kagamiyama, and O. Hayaishi. 1963. Metapyrocatechase I. Purification, crystallization and some properties. Biochemische Zeitschrift 338:582-590.
Ohlendrof, D. H., J. D. Lipscomb, and P. C. Weber. 1988. Structure and assembly of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa. J. Mol. Biol. 336:403-405.
Okuta, A., K. Ohnishi and S. Harayama. 1998. PCR isolation of Catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene. 212:221-228.
Olson, P. E., B. Qi, L. J. Que, L. P. Wackett. 1992. Immunological demonstration of a unique 3,4-dihydroxyphenylacetate 2,3-dioxygenase in soil Arthrobacter strains. Appl. Environ. Microbiol. 58:2820-2826.
Patel, R. N., C. T. Hou, A. Felix, and M. O. Lillard. 1976. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties. J. Bacteriol. 127:536-544.
Que, L. J. 1980. Non-heme iron dioxygenases. Struct. Bond. 40:39-72.
Que, L. J., J. Widom, R. L. Crawford. 1981. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase: a manganese(II) dioxygenase from Bacillus brevis. J. Biol. Chem. 256:60-74.
Sambro, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
Senda T., K. Sugiyama, H. Narita, T. Yamamoto, K. Kimbara, M. Fukuda, M. Sato, K. Yano and Y. Mitsui. 1996. Three-dimensional structure of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol. 255:735-752.
Shannon, M. J. R. and R. Unterman. 1993. Evaluating bioremediation: distinguishing fact from fiction. Ann. Rev. Microbiol. 47:715-738.
Smith M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191-206.
Stegmann, R., E. Manakova, M. Roessle, H. Heumann, S.E. Nieba-Axmann, A. Plueckthun, T. Hermann, R. P. May and A. Wiedenmann. 1998. Structure change of the Escherichia coli GroEL-GroES chaperonins upon complex formation in solution: A neutron small angle scattering study. J. Struct. Biol. 121:30-40
Suda, M., K. Hashimoto, H. Matsuoka, and T. Kamahora. 1951. J. Biochem(Tokoy). 38:289.
Stanier, R. Y., G. Cohen-Bazire, and W. R. Sistrom. 1957. Kinetics studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49:25.
Timmis, K. N., R. J. Steffan, and R. Unterman. 1994. Designing microorganisms for the treatment of toxic waters. Annu. Rev. Micrbiol. 48:525-557.
Tsu-Lin Lee, Yuan-Chang Hsu and Shir-Ly Huang. 1999. Characterization of four catechol 2,3-dioxygenases from Pseudomonas putida SH1. Abstract of the 33rd Annual Meeting of the Chinese Society of Microbiology. p. 68.
Van Dort, H. M. and D. L. Bedard. 1991. Reductive ortho and meta Dechlorination of a Polychlorinated Biphenyl Congener by Anaerobic Microorganisms. Appli. Envir. Microbiol. 57:1576-1578.
Ven der Meer, J. R., R. I. L. Eggen, A. J. B. Zehnder, and W. M. de Vos. 1992. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodeds metabolism of chlorinated catechols:eviedence for specialization of catechol 1,2-dioxygenases for chlorinated substrate. J. Bacteriol. 173:2425-2434.
Williams, P. A. and K. Murray. 1974. Metabolism of benzoate and the ethylbenzoate by Pseudomonas (arvilla)putida mt-2:evidence for the existence of a TOL plasmid. J. Bacteriol. 120:416
Yen, K. M., and I. C. Gunsalus. 1985. Regulation of naphthalene catabolic genes 0f plasmid NAH7. J. Bacteriol. 162:1008-1013.
Zaccai, G. 1999. Neutron scattering in biology in 1998 and beyond. J. Phys. Chem. Solids 60:1291-1295.
Zylstra, G. J., and D. T. Gibson. 1989. Toluene degration by Pseudomonas putida F1. J. Biol. Chem. 264:14940-14946.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2000-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明