博碩士論文 88221015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.81.29.226
姓名 林有鈿(Yu-Tien Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱 加權赫茲形式哈弟空間上的郝曼德乘算子
(Hormander's multipliers for the weighted Herz-type Hardy spaces)
相關論文
★ 奇異積分算子的加權模不等式★ Marcinkiewicz積分交換子的有界性
★ 帶變量核之奇異積分算子★ 奇異積分的加權有界性
★ 乘積空間上離散型Littlewood-Paley理論★ Hardy-Hilbert型式的不等式和Cauchy加法映射的穩定性
★ 關於section的哈代空間上的分子刻畫★ Hardy spaces associated to para-accrective functions
★ 哈地空間在開集合上的極大函數刻畫
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇文章中,我們利用由林欽誠教授及李明憶所發展的加權哈弟空間
(weighted Hardy space)上的分子特徵來証明郝曼德乘算子
(Hormander's multipliers)在加權赫茲形式哈弟空間 (weighted
Herz-type Hardy spaces) $Hdot K_2^{alpha,p}(|x|^t;|x|^t)$
and $HK_2^{alpha,p}(|x|^t;|x|^t)$上的有界性。
摘要(英) In this article, we apply the molecular characterization of the weighted
Hardy space developed by the first two authors to show the boundedness of
Hormander multiplier on the weighted Herz-type Hardy spaces
$Hdot K_2^{alpha,p}(|x|^t;|x|^t)$ and $HK_2^{alpha,p}(|x|^t;|x|^t)$.
關鍵字(中) ★ 加權赫茲形式哈弟空間
★ 郝曼德乘算子
關鍵字(英) ★ Hormander’’s multipliers
★ weighted Herz-type Hardy spaces
論文目次 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. The Ap weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. The atomic decomposition and molecular characterization . . 7
4. Main results and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
參考文獻 [BS] A. Baernstein II and E. T. Sawyer, Embedding and multiplier theorems
for Hp(Rn), Mem. Amer. Math. Soc. 53 (1985).
[Be] A. Beurling, Construction and analysis of some convolution algebras,
Ann. Inst. Fourier Grenoble 14 (1964), 1-32.
[CF] R. Coifman and C. Fe erman, Weighted norm inequalities for maximal
functions and singular integrals, Studia Math. 51 (1974), 241-250.
[Fe] H. G. Feichtinger, An elementary approach to Wiener’s third
Tauberian theorem for the Euclidean n-spaces, Proceedings of Conference
at Cortona 1984, Symposia Mathematica 29, Academic Press, New
York (1987), 267-301.
[Fl] T. M. Flett, Some elementary inequalities for integrals with applications
to Fourier transforms, Proc. London Math. Soc. (3) 29 (1974), 538-556.
[GR] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities
and Related Topics, North Holland, 1985.
[He] C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent
Fourier transforms, J. Math. Mech. 18 (1968), 283-324.
[HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities
for the conjugate function and Hilbert transform, Trans. Amer. Math.
Soc. 176 (1973), 227-251.
[LL] Ming-Yi Lee and Chin-Cheng Lin, The molecular characterization of
weighted Hardy spaces, J. Funct. Anal. 188 (2002), 442-460.
[LY1] S. Lu and D. Yang, The decomposition of the weighted Herz spaces and
its applications, Sci. in China (Ser. A) 38 (1995), 147-158.
[LY2] , The weighted Herz-type Hardy spaces and its applications, Sci.
in China (Ser. A) 38 (1995), 662-673.
[LY3] , The local versions of Hp(Rn) spaces at the origin, Studia Math.
116 (1995), 103-131.
[M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal
function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[ST] J.-O. Str¨omberg and A. Torchinsky, Weighted Hardy Spaces, Lecture
Notes in Mathematics, vol. 1381, Springer-Verlag, 1989.
[TW] M. H. Taibleson and G.Weiss, The molecular characterization of certain
Hardy spaces, Ast´erisque 77 (1980), Soci´et´e Math. de France, Paris, 67-
149.
指導教授 林欽誠(Chin-Cheng Lin) 審核日期 2002-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明