博碩士論文 88222002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:34.229.126.29
姓名 張立鵬( Li-Peng Zhang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 螺旋狀高分子長鏈在拉力下之電腦模擬研究
(Monte Carlo Simulation Study of a Helical Polymer ChainUnder a Stretching Force)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 高分子鏈在交流電場或流場下的行為
★ 驟放式發火神經元的數值模擬★ DNA在微通道的熱泳行為
★ 皮膚細胞增生與腫瘤生長之模擬★ 耦合在非線性系統中的影響:模型探討以及非線性分析
★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 性有所了解,因此希望從理論及電腦模擬的方面來進一步探討。在這篇論文中,
利用蒙地卡羅法(Monte-Carlo Simulations)及一個粗粒化的高分子晶格模型—鍵
振盪模型(Bond Fluctuation Model),來研究一條具有螺旋狀的高分子長鏈在外部
拉力下,伸長量與拉力的關係。除了在拉力較小時滿足Hook’s law 線性關係的
範圍外,我們主要針對拉力較大時滿足Pincus law 非線性關係的範圍,也就是伸
長量與拉力成指數關係。這個非線性關係遵守尺度定律(Scaling law),可由尺度
函數(Scaling function)來描述,並且此非線性關係與所使用的模型無關。比較之
前研究一條柔軟高分子長鏈的結果,我們模擬結果顯示一條較硬的高分子長鏈其
從線性到Pincus 之間的範圍較小。此外,我們利用扭曲度(Writhe),鍵向量相關
連函數(Correlation Function of Bond vectors)及改變鍵角(Bending angle)與扭角
(dihedral angle)方向的硬度來描述對螺旋結構的變化,特別是描述一條從無序結
構到有螺旋結構的高分子長鏈。因此,從模擬結果也可以了解在外部拉力下具有
螺旋狀的高分子長鏈的幾何結構變化。
摘要(英) tweezers, or shear flow made it feasible for detailed experimental studies of the
conformations of single long molecules, especially in helical double-stranded DNA
molecules, so we hope to realize it more theoretically and by simulations. In the thesis,
the static properties of a single stiff helical polymer chain under stretching is
investigated by Monte Carlo simulations with the bond-fluctuation model. The
primary purpose is to describe the change of conformations and the persistence length
of a helical chain due to the rigidity of the chain and measure the extension of the
chain under an external stretching force. We attempt to employ the measures such as
the correlation function of bond vectors, average of the Writhe, radius gyrations,
dihedral angles and bending angles to describe the helical structures. At the high
scaled temperatures, the chain behaves like a disordered coil chain, however, at low
scaled temperatures, the local he lical structures emerge. This properties can be
verified by the above the measured quantities. As for stretching the helical polymer
chain, we focus deformation of the chain on the linear force regime and non-linear
Pincus regime mainly because both of the regimes have the universal scaling
behaviors. We observed that the width of the regime from the linear to Pincus
behaviors for the chain with the rigidity parameter becomes more narrow than one of
the flexible chain involving only excluded volume interactions. Finally, our
simulation data also show the changes of geometry such as sinθ, sinψ, writhe, and
the pitch due to the stretching force.
論文目次 1 Introduction 6
1.1 Review of biophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Simulations and Theory 19
2.1 Bond-Fluctuation Model and Monte Carlo Method . . . . . . . . . . . . 19
2.2 Theory of the Pincus scaling law . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Theory of the wormlike chain . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Results and Discussion 30
3.1 Coil and helical conformations . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Stretching a helical chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Conclusions and Outlook 56
參考文獻 [1] H. Lodish et al:, Molecular Cell Biology, 4th edition, (W. H. Freeman, New
York, 2000).
[2] B. Alberts et al:, Molecular Biology of the Cell, (Garland Publishing, Inc., New
York, 1994).
[3] A. Longtin, J. Stat. Phys. 70, 309(1993); R. J. Douglas et al:, Nature(London) 365,
337(1993).
[4] L.Gammaitoni et al:, Rev. Mod. Phys. 70, 223(1998).
[5] Henry D. I. Abarbanal et al:, Phys. Rev. Lett. 81, 5692(1998).
[6] M. Doi and S. F. Edward The Theory of Polymer Dynamics, (Academic Press,
New York, 1986).
[7] Alexander Yu. Grosberg and Alexei R. Khohlov, Statistical Physics of Macromolecules,
(A. I .P, New York, 1994).
[8] H. Yamakama, Modern Theory of Polymer Solutions, (New York, 1971).
[9] A. M. Gupta, and S. F. Edwards, J. Chem. Phys. 98, 1588, 1993. ; Z. Y. Chen,
Phys. Rev. Lett. 71, 93(1993).
[10] J. L. Barrat and J. F. Joanny, Europhys. Lett. 24, 333(1993).
[11] B.-Y. Ha and D. Thirumalai, Macromolecules 28, 577(1995).
57
[12] D. Poland and H. A. Scheraga, Theory of Helix-coil Transitions in Biopolymers,
(Academic Press, New York and London, 1970).
[13] B. Lee., and Richards, F. M., J. Mol. Biol., 55, 379(1971).
[14] Scheraga et al:, J. Mol. Biol. 264, 770(1996). and Biophysical Journal 75,
2637(1998).
[15] Erich Eisenriegler, Polymers Near Surface (World Scienti…c, Singapore, 1993)
[16] P.-Y. Lai, Phys. Rev. E. 49, 5420(1994).
[17] E. Yu. Kramarenko, R. G. Winkler, P. G. Khalatur, A. R. Khokhlov , and P.
Reineker, J. Chem. Phys. 104, 4806(1996).
[18] K.Yoshikawa, M.Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Phys. Rev.
Lett. 76, 3029(1996).
[19] I.M. Lifshits, A. Yu. Grosberg, and A. R. Khokhlov, Rev.Mod. Phys. 50, 683(1978).
[20] Ayori Mitsutake and Yuko Okamoto, J. Chem. Phys. 112, 10638, 2000 ; Ulrich H.
E. Hansmann, and Yuko Okamoto, J. Chem. Phys 110, 1267(1999).
[21] Gustavo A. Carri and M. Muthukumar, Phys. Rev. Lett. 82, 5405(1999).
[22] P. J. Park and W. Sung, Phys. Rev. Lett. 80, 5687(1998).
[23] P.G.de Gennes, Macromolecules 9, 587(1976).
[24] P. Pincus, Macromolecules 9, 368(1976).
[25] P. G. de. Gennes, Scaling concepts in Polymer Physics, (Cornell, University,
Ithaca, 1979).
[26] I.Webman, J. L. Lebowitz, and M. H. Kalos, Phys. Rev. A 23 , 316(1981).
58
[27] M. Wittkop, J. U. Sommer , S. Kreitmeier, and D. Goritz, Phys. Rev. E 49,
5472(1994).
[28] Y.-J. Sheng, P.-Y. Lai, H.-K. Tsao, Phys. Rev. E 56, 1900(1997).
[29] Y.-J. Sheng, P.-Y. Lai, H.-K. Tsao, Phys. Rev. E 61, 2895(2000).
[30] Perkins, D. E. Smith, and S. Chu, Science 276, 2016(1997).
[31] Y. S. Velichko, K. Yoshikawa, A. R. Khokhlov, J. Chem. Phys. 111, 9424(1999).
[32] J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev. Lett. 98, 1588(1993).
[33] P.-Y. Lai, Phys. Rev. E 53, 3819, 1996. and Phys. Rev. E. 58, 6222(1998).
[34] S.Smith and A Bendich, Biopolymers 29,1167(1990).
[35] S. Smith L. Finze, and C. Bustamante, Science 258, 1122(1992).
[36] Cluzel P., Lebrun A., Harko C., Lavery R, Viovy J.-L., Chatenay D and Caron
F., Science 271, 792(1996); S. Smith,Y. Cui, and C. Bustamante, Science 271,
795(1996).
[37] D. E. Smith,H. P. Babcock, and S. chu, Science 283, 1724(1999). ; P. LeDuc et al.,
Nature(London) 399, 564(1999).
[38] F. Brochard-Wyart, Europhys. Lett. 23, 105(1993).
[39] F. Brochard-Wyart, Europhys. Lett. 30, 387(1995).
[40] K. Kroy and E. Frey, Phys. Rev. Lett. 77, 306(1996).
[41] J. F. Marko, Europhys. Lett. 38, 183(1997).
[42] J. F. Marko, Macromolecules 28, 8759(1995).
[43] J. F. Marko, Phys. Rev. Lett. 57, 2134(1998).
59
[44] B.-Y Ha and D. Thirumalai, J. Chem. Phys. 106, 4243(1997).
[45] H. Zhou, Y. Zhang, and Z. Ou-Yang, Phys. Rev. Lett. 62, 1045(2000).
[46] H.Yamakawa and Motoharu Fujii, J. Chem. Phys. 64, 5222(1976).
[47] J. F. Leger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, and J. F.
Marko., Phys. Rev. Lett. 83, 1066(1999).
[48] I. Carmesin and K. Kremer, Macromolecues 21 , 2819, (1988).
[49] W. Paul, N. Pistoor, Macromolecues 27 , 1249, (1994)
[50] Kurt Binder, Monte Carlo andMolecularDynamics Simulations in Polymer
Science, (Oxford, New York, 1995).
[51] V. Tries, W. Paul, Bashchangel, and K. Binder, J. Chem. Phys. 106, 738(1997).
[52] F. B. Fuller, Proc. Natl. Acad. Sci. U.S.A. 68, 815(1971). ; J. H. White, Am. J.
Math. 91, 693(1969).
60
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2001-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明