博碩士論文 88241002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.229.118.253
姓名 林顯仁(Hsien-Jen Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱 具跳躍亞式選擇權及相關財務問題之研究
(On Asian Options with Jumps and Other Financial Problems)
相關論文
★ 不完整市場的亞洲選擇權★ 關於時間連續的馬爾可夫過程之離散骨架探討
★ 隨機右設限數據之風險率的貝氏估計方法★ 利用Bernstein多項式來研究二元迴歸
★ 凱利準則及其在賭博上的應用★ Studies on Fractional Brownian Motion: Its Representations and Properties
★ 數據依賴誤差之階梯函數迴歸的貝氏方法★ 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在探討一些較實際的衍生性金融商品的評價與避險策略。本文共分為七章,其主要結果分述如下:
在第一章中,我們主要探討具風險的標的在模型
$S_t=S_0+int_0^tS_s(mu ds+sigma dB_s)+sum_{j=1}^{N_t}S_{tau_j^-}U_j.$
下的評價與避險,因為雜訊過程有跳躍,所以該金融市場為不完備市場,因為其具有許多個等價的鞅測度使得其貼現標的為鞅,所以對此市場的選擇權,一般而言,不可能做完美的避險。因此,我們利用Föllmer和Schweizer發展的理論建構我們模型的最小鞅測度,它將使我們的風險最小化。在此最小鞅測度下,我們
建立了一偏微分方程式,其解為市場的選擇權價,並且在局部最小風險意義下,
我們建立了一避險策略。
在第二章中,我們得到貝氏平方過程(BESQ)在獨立指數分配時間的機率密度函數,利用此結果,我們導出當評價模型為具有一個跳躍的貝氏平方利率過程時零息債券在時間零時的價格。
在第三章中,我們建立了CIR過程一些有用的性質。Pitman和Yor [PY] 建立了BESQ過程與 CIR過程的時間-空間變換關係,利用此結果,我們導出 CIR過程的機率推移密度函數。另外,藉由融合超幾何函數,我們建立了CIR過程與Kummer微分方程式解的關係,更進一步,利用此關係我們得到CIR過程在獨立指數分配時間的機率密度函數。最後,從財務金融的觀點來看,有關 barrier option,我們有興趣研究CIR過程的撞擊時間。藉由鞅性質的方法,我們得到CIR過程的撞擊時間的拉普拉斯變換。
在第四章,我們考慮有跳躍的亞洲選擇權在時間零的評價。Geman 和Yor [GYa1] 曾經對連續的亞洲選擇權在時間零時於隨機指數分配的到期時間給予一封閉解,且經拉普拉斯逆變換可得到期時間為固定時的亞洲選擇權在時間零的評價,受其啟示,首先我們推廣其結果到具有一個跳躍的亞洲選擇權,它似乎更符合實際金融市場的情況。另外,我們建立了一積分-微分方程式與多重跳躍的亞洲選擇權在時間零的評價關係。
在第五章,我們利用 change-of-numéraire 方法,我們建立了一積分-微分方程式與多重跳躍的亞洲選擇權在任意時間t時的評價關係。
在第六章中,我們主要探討亞洲選擇權的避險策略。令
$q:=frac{sigma^2}{4S_t}(K(T-t_0)-int_{t_0}^tS_udu).$
q雖為隨機但在時間t卻為已知,由觀察q在時間t的值,我們對亞洲選擇權做不同的避險投資組合。
在第七章中,我們考慮劇變選擇權的避險。我們採用Geman和Yor [GYa3]的模型。若時間在虧損區間內,我們建立一風險最低的投資組合。另一方面,若時間在發展區間內,因為有關劇變的訊息已知,我們建立一複製劇變選擇權的避險策略。
摘要(英) This thesis consists of seven chapters. Its organization is stated as below.
In chapter 1, we study the locally risk-minimizing hedging strategy for asset models
with jumps. For this model, we give the minimal martingale measure under which we
give a PDE satisfied by the price of the option and we then construct a hedging strategy
for the contingent claim in the locally risk-minimizing sense.
Chapter 2 is devoted to finding the distribution of a squared Bessel process run for
an exponentially distributed time and applying this result to find the price of a zero
coupon bond at time zero when the pricing model involves a squared Bessel interest
process and there is one jump.
In chapter 3, we derive some properties of variants of squared Bessel processes
known as CIR processes in the finance literature, as they were introduced by Cox,
Ingersoll and Ross for the modelling of interest rates. By using the time-space transformation
from a Bessel-squared process to a CIR process, we are able to easily derive
the transition probability density function of a square-root process and compute explicitly
the resolvent density of CIR processes. As a consequence we can derive the
density of CIR processes sampled at an independent exponential time. Finally, we
exploit martingale methods to derive expressions for the Laplace transform of the first
hitting time of a point by a square-root process.
In chapter 4, we are concerned with the computation of Asian options when the
underlying asset has a jump. In the Black and Scholes model, Geman and Yor give
a closed-form formula for the price of an Asian option at a random exponential distributed
maturity (it then “suffices” to invert the Laplace transform to have the price
at a fixed time). The aim of this chapter is to obtain such a formula in a model (which
seems more realistic) of Black and Scholes with a jump at a random time, which ex-
tends the well-known case of the continuous Black and Scholes model. Furthermore, we
treat the multi-jump case. We present an integro-differential equation whose solution
leads to the time zero price of an Asian option with multi-jump, which is based upon
an identity in law between the exponential functional under study and the value at a
fixed time of a Markovian process.
Chapter 5 is concerned with the computation of Asian options on the underlying
asset driven by a combined geometric Brownian motion and a geometric compound
Poisson process. We present an integro-differential equation whose solution leads to
the risk-neutral price at time t of Asian options.
In chapter 6, we use Geman-Yor’s contingent pricing formula to obtain a hedging
strategy replicating Asian options.
Finally, chapter 7 is concerned with pricing and hedging catastrophe options. We
derive a hedging strategy minimising the risk at maturity if this date t belongs to the
loss period and replicating the option if this date t belongs to the development period.
關鍵字(中) 關鍵字(英) ★ zero coupon bonds
★ resolvent
★ Poisson measure
★ minimal risk
★ Markov processes
★ Levy decomposition
★ Lamperti's representation
★ Ito's formula
★ incomplete market
★ CAT options
★ cadlag semimartingale
★ hitting times
★ hedging
★ Girsanov's theorem
★ barrier options
★ Asian option
論文目次 Contents . . . . .. . . . . . . . . . . .I
1 Locally risk-minimizing hedging strategy for asset models with jumps . . .. 1
1.1 Introduction . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . 1
1.2 Description of the trading model . . . . . . . . . . . . . . . . . . . . 2
1.3 The F¨ollmer-Schweizer minimal measure . . . . . . . . . . . . . . . . . 6
1.4 Locally risk-minimizing strategy . . . . . . . . . . . . . . . . . . . 8
2 Pricing model for zero coupon bonds driven by Bessel-squared interest
processes with a jump . . . . . . . . . . . . . . . . . . .17
2.1 Introduction .. . . . . . . . . . . . . . 17
2.2 Dynamics of the interest rate model driven by Bessel-squared processes with jumps. . . . . . . . . . . . . . . . .18
2.3 Valuation of zero coupon bonds under stochastic interest rates with one
jump . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 22
3 Some Properties of CIR processes . . . . . . . . . . . . . .. .. .32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 A discussion of the transition probabilities of CIR processes . . . . . 33
3.3 First hitting times of CIR processes . .. . . . . . . . . . . . . . . . 38
3.4 Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Asian options with jumps . . . . . . . . . . . . . . . . . . . . . . ....44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Dynamics of the underlying asset . . .. . . . . . . . . . . . . . . . . 46
4.3 Asian options with a single jump . . . . . . . . . . . . . . . . . . . 47
4.4 Asian options with multi-jump . . . . . . . . . . . . . . . . . . . . . 60
5 Pricing Asian Options on assets driven by a combined geometric Brownian motionand a geometric compound Poisson process . . . . . . . .. . . . . . . 64
5.1 Introduction . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 64
5.2 Dynamics of the risky asset . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Pricing formula for Asian options . . . . . . . . . . . . . . . . . . . 65
6 Hedging processes for Asian options . . . . . . . . . . . . . . . . . . 76
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Hedging processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7 Hedging processes for catastrophe options . . . . . . . . . . .. . . . . .92
7.1 Introduction . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 92
7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Hedging processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
參考文獻 References
[Aa] Aase, K.K.: Contingent claims valuation when the security price is a combination of an Ito process and a random point process. Stoch. Proc. Appl. 28, 185–220 (1988)
[ADY] Alili, L., Dufresne, D., Yor, M.: Sur l’identit´e de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift. In: Yor, M. (ed.): Exponential functionals and principal values related to Brownian motion. Madrid: Revista Matem´atica Iberoamericana 1997, pp. 3–14
[Ar] Arai, T.: Minimal martingale measures for jump diffusion processes. J. Appl. Prob. 41, 263–270 (2004)
[BK] Bingham, N.H., Kiesel, R.: Risk-Neutral Valuation: pricing and hedging of financial derivatives. London: Springer 1998.
[BMKR] Bj¨ork, T., Masi, G.D., Kabanov, Y., Runggaldier, W.: Towards a general
theory of bond markets. Finance Stochast. 1, 141–174 (1997)
[BS] Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. J. Political Econom. 81, 637–654 (1973)
[Ch] Chan, T.: Pricing contingent claims on stocks driven by L´evy processes. Annals of Applied Probability 9, 504–528 (1999)
[CIR1] Cox, J.C., Ingersoll, J.E.Jr., Ross, S.A.: A theory of term structure of interest rates. Econometrica 53 (2), 385–407 (1985)
[CIR2] Cox, J.C., Ingersoll, J.E.Jr., Ross, S.A.: An intertemporal general equilibrium model for asset prices. Econometrica 53, 363–384 (1985)
[CL1] Chou, C.S., Lin, H.J.: Hedging processes for Asian options. Far East Journal of Mathematical Sciences (FJMS) 18 (1), 89–108 (2005)
[CL2] Chou, C.S., Lin, H.J.: Some properties of CIR processes, to appear in Stochastic Analysis and Applications.
[CL3] Chou, C.S., Lin, H.J.: Asian options with jumps, to appear in Statistics & Probability Letters.
[CL4] Chou, C.S., Lin, H.J.: Pricing model for zero coupon bonds driven by Besselsquared interest processes with a jump, Statistics & Probability Letters, in revision.
[CL5] Chou, C.S., Lin, H.J.: Locally risk-minimizing hedging strategy for asset models with jumps, Statistics & Probability Letters, in revision.
[CCL1] Chou, C.S., Chao, I.F., Lin, H.J.: Hedging processes for catastrophe options, preprint.
[CCL2] Chou, C.S., Chao, I.F., Lin, H.J.: Pricing Asian options on assets driven by a combined geometric Brownian motion and a geometric compound Poisson process, preprint.
[CPY1] Carmona, P., Petit, F., Yor, M.: Sur les fonctionnelles exponentielles de certains processus de L´evy. Stochastics and Stochastics Reports 47, 71–101 (1994)
[CPY2] Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals of L´evy processes. In: Yor, M. (ed.): Exponential functionals and principal values related to Brownian motion. Madrid: Revista Matem´atica Iberoamericana 1997, pp. 73–121
[CS] Chen, R.R., Scott, L.: Pricing Interest Rate Options in a Two-Factor Cox–
Ingersoll–Ross Model of the Term Structure. The review of financial studies 5 (4), 613–636 (1992)
[De] Delbaen, F.: Consols in the CIR model. Math. Finance 3 (2), 125–134 (1993)
[DGY] Donati-Martin, C., Ghomrasni, R., Yor, M.: On certain Markov processes attached to exponential functionals of Brownian motion; application to Asian options. Revista Matematica Iberoamericana 17, 179–193 (2001)
[dHK] de Haan, L., Karandikar, R.L.: Embedding a stochastic difference equation into a continuous-time process. Stoch. Proc. Appl. 32, 225–235 (1989)
[DM] Dellacherie, C., Meyer, P. A.: Probabilities and potential B. Theory of Martingales. Amsterdam New York Oxford: North–Holland 1982
[DP] Dritschel, M., Protter, P.: Complete markets with discontinuous security price. Finance Stochast. 3, 203–214 (1999)
[Du] Dufresne, D.: The integral of geometric Brownian motion. Adv. in Appl. Probab. 33, 223–241 (2001)
[DY] Donati-Martin, C., Yor, M.: Some measure-valued Markov processes attached to occupation times of Brownian motion. Bernoulli 6 (1), 63–72 (2000)
[EJY] Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10 (2), 179–195 (2000)
[EK] Elliott, R.J., Kopp, P.E.: Mathematics of Financial Markets. London: Springer Verlag 1999
[ELY] Elworthy, K.D., Li, X-M., Yor, M.: The importance of strictly local martingales; applications to radial Ornstein–Uhlenbeck processes. Probab. Theory Relat. Fields 115, 325–355 (1999)
[EMOT] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: BatemanManuscript Project, Tables of Integral Transforms. Vol. I. New York: McGraw-Hill 1954
[Ex1] Exton, H.: Multiple Hypergeometric Functions and Applications. Chichester, U.K.: Ellis Horwood 1976
[Ex2] Exton, H.: Handbook of Hypergeometric Integrals. Theory, applications, tables, computer programs. Chichester, U.K.: Ellis Horwood 1978
[Fe] Feller, W.: Two Singular Diffusion Problems. Ann. of Math. 54 (1), 173–182 (1951)
[FSa] F¨ollmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information, in: M. H. A. Davis and R. J. Elliott (eds.), Applied Stochastic Analysis, Stochastics Monographs, Vol. 5. New York: Gordon and Breach, pp. 389–414 1991
[FSb] F¨ollmer, H., Sondermann, D.: Hedging of non-redundant contingent claims, in: W. Hildenbrand and A. Mas-Colell (eds.), Contributions to Mathematical Economics. Amsterdam: North-Holland, pp. 205–223 1986
[Gea] Getoor, R. K.: The Brownian escape process. Ann. Prob. 7 (5), 864–867 (1979)
[Geb1] Geman, H.: CAT calls. Risk, September (1994)
[Geb2] Geman, H.: Time Changes, Laplace Transforms and Path-Dependent Options.
Computational Economics 17, 81–92 (2001)
[GE] Geman, H., Eydeland, A.: Domino effect: Inverting the Laplace transform. Risk, April (1995)
[GYa1] Geman, H., Yor, M.: Bessel processes, Asian options and perpetuities. Math. Finance 3 (4), 349–375 (1993)
[GYa2] Geman, H., Yor, M.: Pricing and Hedging Double-Barrier Options: A Probabilistic Approach. Math. Finance 6 (4), 365–378 (1996)
[GYa3] Geman, H., Yor, M.: Stochastic time changes in catastrophe option pricing. Insurance: Mathematics and Economics 21, 185–193 (1997)
[GYb] G¨oing-Jaeschke, A., Yor, M.: A survey and some generalizations of Bessel processes. Bernoulli 9 (2), 313–349 (2003)
[He] Heston, S.L.: A closed form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies 6, 327–343 (1993)
[HK] Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. Journal of Economic theory 20, 381–408 (1979)
[HP] Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Proc. Appl. 11, 215–260 (1981)
[HWY] He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Beijing New York: Science Press 1992
[IM] Itˆo, K., McKean, H.P.: Diffusion processes and their sample paths. Berlin Heidelberg New York: Springer 1965
[JK] Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Univariate Distributions, volume 2. Boston: Houghton Mifflin Company 1970
[Ke] Kent, J.: Some probabilistic properties of Bessel functions. Ann. Prob. 6 (5), 760–770 (1978)
[Kl] Klebaner, F.: Option price when the stock is a semimartingale. Elect. Comm. in Probab. 7, 79–83 (2002)
[KV] Kemna, A.G.Z., Vorst, A.C.F.: A Pricing Method for Options Based on Average Asset Values. Journal of Banking and Finance 14, 113–129 (1990)
[Le] Lebedev, N.N.: Special functions and their applications. New York: Dover Publications 1972
[LL] Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. London: Chapman and Hall 1996
[Lu] Lu, F.M.: Incomplete Market Asian Options. M.S. thesis, Department of Mathematics, National Central University, Taiwan, 2001
[Øk] Øksendal, B.: Stochastic Differential Equations. Berlin Heidelberg New York: Springer 2003
[Pr1] Protter, P.: Stochastic Integration and Differential Equations. New York: Springer 1990
[Pr2] Protter, P.: A partial introduction to financial asset pricing theory. Stoch. Proc. Appl. 91, 169–203 (2001)
[PY] Pitman, J., Yor, M.: A Decomposition of Bessel Bridges. Zeit. Wahrsch. Geb. 59, 425–457 (1982)
[RS] Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Prob. 32, 1077–1088 (1995)
[RY] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Berlin:
Springer 1999
[Sc1] Schweizer, M.: Hedging of options in a general semimartingale model, Diss. ETH Z¨urich 8615 (1988)
[Sc2] Schweizer, M.: Option hedging for semimartingales. Stoch. Proc. Appl. 37,
339–363 (1991)
[Sc3] Schweizer, M.: On the minimal martingale measure and the F¨ollmer-Schweizer decomposition. Stochastic Analysis and Applications 13, 573–599 (1995)
[Sc4] Schweizer, M.: A guided tour through quadratic hedging approaches, in: E.
Jouini, J. Cvitani´c and M. Musiela (eds.),Option pricing, interest rates and risk management, Cambridge University Press, pp. 538–574 2001
[Sha] Sharpe, M.J.: Some Transformations of Diffusions by time reversal. Ann. Prob. 8 (6), 1157–1162 (1980)
[Shb] Shreve, S.E.: Stochastic calculus for finance II. New York: Springer-Verlag 2004
[Sl] Slater, L.J.: Confluent hypergeometric functions. London: Cambridge University Press 1960
[Ve1] Vecer, J.: A new PDE approach for pricing arithmetic average Asian option. J. Comput. Fin. 4 (4), 105–113 (2001)
[Ve2] Vecer, J.: Unified Asian pricing. Risk 15 (6), 113–116 (2002)
[VX] Vecer, J., Xu, M.: Pricing Asian options in a semimartingale model. Quant. Fin. 4, 170–175 (2004)
[Yo1] Yor, M.: Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z. Wahrscheinlichkeitstheorie verw. Gebiete 53, 71–95 (1980)
[Yo2] Yor, M.: Une explication du th´eor`eme de Ciesielski–Taylor. Ann. Inst. Henri Poincar´e 27 (2), 201–213 (1991)
[Yo3] Yor, M.: Some Aspects of Brownian Motion. Part I: Some Special Functionals. Lectures in Mathematics. ETH Z¨urich: Birkh¨auser 1992
[Yo4] Yor, M.: On some exponential functionals of Brownian Motion. Adv. in Appl. Probab. 24 (3), 509–531 (1992)
[Yo5] Yor, M.: Some Aspects of Brownian Motion. Part I: Some Special Functionals. Basel Boston Berlin: Birkh¨auser Verlag 1992
[Yo6] Yor, M.: Sur certaines fonctionnelles exponentielles du mouvement Brownien r´eel. J. Appl. Prob. 29, 202–208 (1992)
[Yo7] Yor, M.: On Some Exponential-Integral Functionals of Bessel Processes. Math. Finance 3 (2), 231–240 (1993)
[Yo8] Yor, M.: Exponential Functionals of Brownian Motion and Related Processes. Berlin Heidelberg New York: Springer 2001
指導教授 周青松、趙一峰
(Ching-Sung Chou、I-Feng Chao)
審核日期 2006-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明