博碩士論文 88242002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.141.8.247
姓名 江智偉(Chih-Wei Chiang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 對流層氣膠光學性質之研究
(The optical properties measurements of tropospheric Aerosols)
相關論文
★ 氧氣在105-190nm間高激發態之光譜研究★ H2O光解產生OH(A2Σ+)振動態之研究
★ 氮氣光譜之研究Ⅰ:C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 丙炔與丙二烯吸收光譜之研究
★ O2(b1Sg+)氣輝的全球分布與變化★ 以雷射雷達量測對流層頂之溫度、高度分布 -與無線電探空儀量測資料之比較、分析
★ 氮氣光譜之研究Ⅱ: C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 一氧化氮激態的消光及螢光激發光譜之研究
★ 一氧化氮激態D2Σ+螢光之消激研究★ 一氧化氮激態A2Σ+螢光之消激研究
★ 中壢上空10–30公里間的卷雲、氣膠、溫度的測量與光散射性質之研究★ 低對流層氣膠之光達量測
★ 氮氣分子在45-100 nm之光吸收、光離子化、光解離★ 利用光達技術探測氣膠與水汽之作用
★ 利用地面與空載光達進行熱帶高空卷雲之研究★ N2O在60-120nm之吸收光譜、光游離與螢光激發光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用實驗室開發的雙波長、偏振與Raman雷射雷達(LIDAR)遙測中壢地區1-5公里夜間氣膠的光學性質、來源、傳送過程、季節變化和水汽等關係,並配合其它觀測儀器和理論模式如太陽光度計(Sun-Photometer)、探空儀(Radiosonde)、能見度儀(Visibility)、衛星影像(TOMS)和逆軌跡(HYSPLIT)等進行分析討論。全部的分析資料為2002/2至2004/5月間,126天背景氣膠資料和40天特殊事件(沙塵和生質燃燒)氣膠資料。發現對流層背景氣膠主要分佈於3公里以下,並有季節性變化。1-5公里間光學厚度的最大值與最小值分別出現於春季和秋季。偏振雷射雷達配合逆軌跡可區分不同來源氣膠的光學性質與分佈高度。沙塵粒子有較大的平均消偏振比值,主要分佈於0.12~0.27。雙波長雷射雷達可用來測量粒徑大小的高度分佈。利用Raman雷射雷達測量水汽的結果除了與探空水汽資料吻合外,對於研究氣膠與水汽間的交互作用上具有相當的潛力。
摘要(英) Dual-wavelength, depolarization, and Raman Lidar observations for the tropospheric aerosols in the height region 1-5 km, using data of 126 days for background aerosols and 40 days for special aerosols events (dust and biomass burning) during the period 2002/2-2004/5, are presented in this paper. Lidar measurements revealed the optical properties, source, transport processes, seasonal variation, and humidity effect of aerosols. Data were analyzed in conjunction with Sun-photometer, Radiosonde, Visibility, satellite image (TOMS), and trajectory studies (HYSPLIT). The larger aerosols loading occurred below 3 km and had a distinct feature of seasonal variation. The maximum and minimum aerosol optical thickness, in the height region of 1-5 km, for the spring and fall seasons respectively. There are different characteristics for various aerosols which are recognized by using depolarization Lidar. The dust aerosols events have larger depolarization ratio varied mainly between 0.12 and 0.27. The height distribution of the particles size derived from the dual-wavelength Lidar. Raman Lidar measured the results of humidity were not only coincidence with Radiosonde but also had the potential to understand the interaction of aerosols and humidity.
關鍵字(中) ★ 雷射雷達
★ 氣膠
★ 沙塵
★ 生質燃燒
關鍵字(英) ★ LIDAR
★ Aerosols
★ Dust
★ Biomass burning
論文目次 中文摘要 I
ENGLISH ABSTRACT II
目次 III
表目錄 V
圖目錄 VI
第1章 簡介 1
1.1 氣膠 1
1.2 亞洲沙塵暴 4
1.3 東南亞生質燃燒 6
1.4 研究動機與架構 7
第2章 雷射雷達理論 8
2.1 雷射雷達方程式 9
2.2 偏振雷射雷達 13
第3章 雷射雷達系統 15
3.1 雷射雷達操作 15
3.2 氣膠粒子大小量測方法 17
3.3 夜間氣膠擾動層之測量方法 18
3.4 誤差分析 20
3.4.1 邊界值所造成之誤差 20
3.4.2 Lidar Ratio所造成之誤差 21
第4章 背景氣膠 22
4.1 氣膠高度分佈 23
4.2 氣膠光學厚度 26
4.3 氣膠消偏振比值 31
4.4 氣膠粒徑與相對濕度之關係 35
第5章 夜間氣膠擾動高度變化 39
5.1 夜間氣膠擾動高度變化 40
5.2 擾動層之討論 45
第6章 特殊事件之氣膠 47
6.1 亞洲沙塵暴與東南亞生質燃燒 47
6.2 氣膠分佈與探空資料之討論 53
第7章 結論 59
參考文獻 61
附錄(A) 水汽量測理論與方法 70
RAMAN 雷射雷達方程式 71
RAMAN 雷射雷達量測水汽之方法 72
附錄(B) 氣膠粒徑與濃度測量補充 80
MIE 散射理論 80
附錄(C) 參考資料與統計結果 84
參考文獻 [1]Ackerman, J., The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study, J. Atmos. Ocean. Technol., 15, 1043-1050, 1998.
[2]Andreae, M.O., R.J. Charlson, R. Bruynseels H. Storms, R.V. Grieken, and W. Maenhaut, Internal mixture of sea salt, silicates and excess sulfate in marine aerosol, Science, 232, 1620-1623, 1986.
[3]Andreae, T.W., M.O. Andreae, and C. Ichoku, Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel, J. Geophys. Res., 107, 10.1029/2001JD900252, 2002.
[4]Angstrom, A., On the atmospheric transmission of Sun radiation and on dust in the air, Geogr. Ann., 12, 130-159, 1929.
[5]Ansmann, A., M. Riebesell, and C. Weitkamp, Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746-748, 1990.
[6]Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys., B55, 18-28, 1992.
[7]Balis, D., A. Papayannis, E. Galani, F. Marenco, V. Santacesaria, E. Hamonou, P. Chazette, I. Ziomas, and C. Zerefos, Tropospheric LIDAR aerosol measurement and sun photometric observations at Thessaloniki Greece, Atmos. Environ., 34, 925-932, 2000.
[8]Cairo, F., G.D. Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, Comparison of Various linear depolarization parameters measured by lidar, Appl. Opt., 38, 4425-4432, 1999.
[9]Casadio, S., A. Di Sarra, G. Fiocco, D. Fua, F. Lena, and M.P. Rao, Convective characteristics of the nocturnal urban boundary layer as observed with Doppler sodar and Raman lidar, Boundary-Layer Meteorology, 79, 375-391, 1996.
[10]Chan, B.P., J.H. Kim, and C.H. Lee, Measurement of Asian dust by using of multiwavelength lidar, SPIE, 4153, 124-131, 2001.
[11]Chan, C.Y., L.Y. Chan, J.M. Harris, S.J. Oltmans, D.R. Blake, Y. Qin, Y.G. Zheng, and X.D. Zheng, Characteristics of biomass burning emission sources, transport, and chemical speciation in enhanced springtime tropospheric ozone profile over Hong Kong, J. Geophys. Res., 108, dio:10.1029/2001JD001555, 2003.
[12]Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, J.E. Jr., Hansen, and D.J. Hofmann, Climate forcing by anthropogenic aerosols, Science, 255, 423-430, 1992.
[13]Chen, T.J., and H.J. Chen, Study on large-scale features of dust storm system in East Asia, Meteorol. Res., 10, 57-79, 1987.
[14]Christopher, D.E., and E.B. Kimberly, Survey of fires in Southeast Asia and India during 1987, in Global Biomass Burning, 2, 663-670, MIT Press, Cambridge, Mass., 1996.
[15]Collis, R.T.H and P.B. Russell, Lidar measurement of particles and gases by elastic backscattering and differential absorption, in Laser Monitoring of the Atmosphere, E.D. Hinkley, Ed., Springer-Verlag, New York, 1976.
[16]Condon, E.U., and H. Odishaw, Handbook of Physics, McGraw-Hill, New York, 1967.
[17]Cooper, D.W., J.W. Davis, and R.L., Byers, Measurements of depolarization by dry and humidified salt aerosols using lidar analogue, J. Aerosol Sci., 5, 117-123, 1974.
[18]Dentener, F.J., G.R. Carmichael, Y. Zhang, J. Lelieveld, and P.J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22869-22889, 1996.
[19]Duce, R.A., C.K. Unni, B.J. Ray, J.M. Prospero, and J.T. Merrill, Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability, Science, 209, 1522-1524, 1980.
[20]Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O’Neill, I. Slutsker, and S. Kinne, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104, 31333-31349, 1999.
[21]Fernald, F., B. Herman, and J. Reagan, Determination of aerosol height distribution by lidar, J. Appl. Meteorol., 11, 482-489, 1972.
[22]Fishman, J., and V.G. Brackett, The climatological distribution of tropospheric ozone derived from satellite measurements using version 7 Total Ozone Mapping Spectrometer and stratospheric Aerosol and Gas Experiment data sets, J. Geophys. Res. 102, 19275-19278, 1997.
[23]Gillette, D.A., G.J. Stensland, A.L. Williams, W. Barnard, D. Gatz, P.C. Sinclair, and T.C. Johnson, Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States, Global Biogeochem. Cycles, 6, 437-457, 1992.
[24]Gras, J.L., Southern hemisphere tropospheric aerosol microphysics, J. Geophys. Res., 96, 5345-5356, 1991.
[25]Griffing, G.W., Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient, Atmos. Environ., 14, 577-584, 1980.
[26]Hale, G.M., and M.R. Querry, Optical constants of water in the 200-nm to 200-m wavelength region, Appl. Opt., 12, 555-563, 1973.
[27]Hamonou, E., P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, and A. Papayannis, Characterization of the vertical structure of Saharan dust export to the Mediterranean basin, J. Geophys. Res., 104, 22257-22270, 1999.
[28]Hanel G., The properties of atmospheric aerosol particles as function of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophy., 19, 73-188, 1976.
[29]Hansen, J.E., and L.D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527-610, 1974.
[30]Hayasaka, T., Y. Meguro, Y. Sasano, and T. Takamura, Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter, Appl. Opt., 37, 961-970, 1998.
[31]Haywood, J.M., and K.D. Shine, The Effect of Anthropogenic Sulfate and Soot Aerosol on the Clear Sky Radiation Budget, Geophys. Res. Lett., 22, 603-606, 1995.
[32]Haywood, J.M., S.R. Osborne, P.N. Francis, A. Keil, P. Formenti, M.O. Andreae, and P.H. Kaye, The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108, 8473, 2003.
[33]Haywood, J.M., P.N. Francis, S.R. Osborne, M. Glew, N. Loeb, E. Highwood, D. Tanre, G. Myhre, P. Formenti, and E. Hirst, Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum, J. Geophys. Res., 108, 8577, 2003.
[34]Hegg, D. A., L.F. Radke, and P.V. Hobbs, Particle Production Associated with Marine Clouds, J. Geophys. Res., 95, 13917-13926, 1990.
[35]Hegg, D., T. Larson, and P.-F. Yuen, A theoretical study of the effect of relative humidity on light scattering by tropospherical aerosol, J. Geophys. Res., 98, 18435-18439, 1993.
[36]Hertzog, A., C. Souprayen, and A. Hauchecorne, Observation and backward trajectory of an inertio-gravity wave in the lower stratosphere, Anna. Geophys., 19, 1141-1155, 2001.
[37]Hess, M., P. Koepke, and I. Schult, Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79, 831-844, 1998.
[38]Hobbs, P.V., Aerosol-cloud interactions, in Aerosol-Cloud-Climate Interactions, Academic, San Diego, Calif., pp.33-73, 1993.
[39]Hofmann, D.J., Twenty years of Balloon-Borne tropospheric aerosol measurements at Laramie, Wyoming, J. Geophy. Res., 98, 12753-12766, 1993.
[40]Holben, B. N., T. F. Eck, and R.S. Fraser, Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing, Int. J. Remote Sens., 12, 1147-1163, 1991.
[41]Holtslag, A.M.M., D. DeBruijn, and C. Pan, A high resolution air mass transformation model for short-range weather forecasting, Mon. Weather Rev., 118, 1561-1575, 1990.
[42]Hooper, W.P., and E. Eloranta, Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon, J. Climate Appl. Meteorol., 25, 990-1001, 1986.
[43]Hsu, N.C., Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia, Geophys. Res. Lett., 30, 1224, 2003.
[44]Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gasso, T. Gill, N.S. Laulainen, F. Lu, M.C. Reheis, Y. Chun, D. Westphal, B.N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilson, K. Sassen, N. Sugimoto, and W.C. Malm, Asian dust events of April 1998, J. Geophys. Res., 106, 18317-18330, 2001.
[45]Ikegami, M., K. Okada, Y. Zaizen, and Y. Makino, Aerosol particles in the middle troposphere over the northern Pacific, J. Meteorol. Soc. Jpn., 71, 517-528, 1993.
[46]Iwasaka, Y., M. Yamato, R. Imasu, and A. Ono, Transport of Asian dust (KOSA) particles; importance of weak KOSA events on the geochemical cycle of soil particles, Tellus, 40B, 494-503, 1988.
[47]Jackson, J.D., Classical Electrodynamics, 2nd edition, Wiley, New York, 1990.
[48]John, W.F., W.A. Hoppel, G.M. Frick, and R.E. Larson, Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean, J. Geophys. Res. 95, 36593664, 1990.
[49]Kaufman, Y.J., A. Setzer, D. Ward, D. Tanre, B.N. Holben, P. Menzel, M.C. Pereira, and R. Rasmussen, Biomass burning airborne and spaceborne experiment in the Amazonas (BASE-A), J. Geophys. Res., 97, 14581-14599,1992.
[50]Kaufman, Y.J., D. Tanre, and O. Boucher, A satellite view of aerosols in the climate system, Nature, 419, 215-223, 2002.
[51]Kim, Y.S., Y. Iwasaka, G.-Y. Shi, Z. Shen, D. Trochkine, A. Matsuki, D. Zhang, T. Shibata, M. Nagatani, and H. Nakata, Features number concentration-size distributions of aerosols in the free atmosphere over the desert areas in the Asian continent: balloon-borne measurements at Dunhuang, China, water, Air, and Soil Pollution: Focus 3, 147-159, 2003.
[52]King, M.D., Y.J. Kaufman, D. Tanre, and T. Nakajima, Remote sensing of tropospheric aerosols from space: past, present, and future, Bull. Am. Meteorol. Soc., 80, 2229-2259, 1999.
[53]Kirchhoff, V.W.J.H, R.A. Barnes, and A.L. Torres, Ozone climatology at Natal, form in situ ozonesonde data, J. Geophys. Res. 96, 10899-10909, 1991.
[54]Klett, J.D., Stable analytical inversion solution for processing lidar returns, Appl. Opt., 20, 211-220, 1981.
[55]Kobayashi, A., S. Hayashida, S. Okada, and Y. Iwasaka, Measurements of the depolarization properties of KOSA (Asian Dust-storm) particles by a laser radar in spring 1983, J. Meteor. Soc. Japan, 63, 144-149, 1985.
[56]Krekov, G.M., Models of atmospheric aerosols. In: Jennings, S.G. (Ed.), Aerosol Effects on Climate, University of Arizona Press, Tucson, Ariz, 1993.
[57]Kurosaki, Y., and M. Mikami, Recent frequent dust events and their relation to surface wind in East Asia, Geophys. Res. Lett., 30, 14, 1736, 2003.
[58]Kwon, S.A., Y. Iwasaka, T. Shibata, and T. Sakai, Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: Lidar measurement in sprint and summer in Nagoya, Japan, Atmos. Environ. 31, 1459-1465, 1997.
[59]Lagrosas, N., Y. Yoshii, H. Kuze, N. Takeuchi, S. Naito, A. Sone, and H. Kan, Observation of boundary layer aerosols using a continuously operated, portable lidar system, Atmos. Environ., 38, 3885-3892, 2004.
[60]Laurent, M., C. Flamant, J. Pelon, and P.H. Flamant, Urban boundary-layer height determination from lidar measurements over the Paris area, Appl. Opt., 38, 945-954, 1999.
[61]Lefrere, J., J. Pelon, C. Cahen, A. Hauchecorne, and P. Flamant, Lidar survey of the post Mt. St. Helens stratospheric aerosol at Haute Provence Observatory, Appl. Opt., 20, 1116-1117, 1981.
[62]Liao, H., and J.H. Seinfeld, Radiative forcing by mineral dust aerosol: sensitivity to key variables. J. Geophys. Res., 103, 31637-31645, 1998.
[63]Li-Jones, X., and J.M. Prospero, Variations in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust, J. Geophys. Res., 103, 16073-16084,1998a.
[64]Li-Jones, X., H.B. Maring, and J.M. Prospero, Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean, J. Geophys. Res., 103, 31113-31121,1998b.
[65]Lin, C.Y., S.C. Liu, C.C.-K Chou, T.H. Liu, C.T. Lee, C.S. Yuan, C.J. Shiu, and C.Y. Young, Long-range transport of Asian dust and air pollutants to Taiwan, TAO, 15, 759-784, 2004.
[66]Lin, T.H., Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation, Atmos. Environ., 35, 5873-5882, 2001.
[67]Liu, Z., N. Sugimoto, and T. Murayama, Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar, Appl. Opt., 41, 2760-2767, 2002.
[68]Mason, B.J., The Physics of Clouds, 2nd Edition, Clarendon Press, Oxford, 1971.
[69]Menut, L., C. Flamant, J. Pelon, and P.H. Flamant, Urban boundary-layer height determination from lidar measurements over the Paris area, Appl. Opt., 38, 945-954, 1999.
[70]Muller, D., O. Dubovik, A. Sinyuk, I. Mattis, U. Wandinger, and A. Ansmann, Aerosol characterization with EARLINET Raman lidar and AERONET Sun photometer, Opt. Pur. y Apl., 37, 3581-3584, 2004.
[71]Murayama, T., H. Okamoto, N. Kaneyasu, H. Kamataki and K. Minra, Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles, J. Geophy. Res. 104, 31781-31792, 1999.
[72]Murayama, T., N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.J. Sohn, J.G. Won, S.C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, Ground-based network observation of Asian dust events of April 1998 in east Asia, J. Geophys. Res., 106, 18345-18359, 2001.
[73]Nair, P.V.N., and K.G. Vohra, Growth of aqueous sulphuric acid droplets as a function of relative himidity, J. Aerosol Sci. 6, 265-271, 1975.
[74]Nair, P.V.N., P.V. Joshi, U.C. Mishra, and K.G. Vohra, Growth of Aqueous solution droplets of and in the atmosphere, J. atmos. Sci. 40,107-115, 1983.
[75]Nakajima, T., M. Tanaka, M. Yamano, M. Shiobara, K. Arao, and Y. Nakainishi, Aerosol optical characteristics in the yellow sand events observed in May, 1982 at Nagasaki Part Ⅱ models, J. Meteorol. Soc. Jpn., 67, 279-291, 1989.
[76]Noel, V., H. Chepfer, G. Ledanois, A. Delaval, and P.H. Flamant, Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio, Appl. Opt. 41, 4245-4257, 2002.
[77]O’Neill, N.T., K.B. Strawbridge, S. Thulasiraman, J. Zhang, A. Royer, and J. Freemantle, Optical coherency of sunphotometry, sky radiometry and lidar measurements during the early phase of Pacific 2001, Atmos. Environ., 38, 5887-5894, 2004.
[78]Okada, K., H. Naruse, and T. Tanaka, X-ray spectrometry of individual Asia dust-storm particles over the Japanese islands and the North Pacific ocean, Atmos. Environ., 24A, 1369-1378, 1990.
[79]Oke, T.R., The energetic basis of the urban heat island, Quarterly Journal of Royal Meteorological Society, 108, 1-24, 1982.
[80]Oke, T.R., Boundary-Layer Climates, Routledge, London, 1987.
[81]Osborne, S.R., and J.M. Haywood, Aircraft observations of the microphysical and optical properties of major aerosol species, Atmos. res., 73, 173-201, 2005.
[82]Pleim, J.E., and A. Xiu, Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models, J. Appl. Meteorol., 34, 16-32, 1988.
[83]Quijano, A.L., N. Sokolik, and O.B. Toon, Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions, J. Geophys. Res., 105, 12207-12219, 2000.
[84]Russell, L.M., S.N. Pandis, and J.H. Seinfeld, Aerosol Production and Growth in the Marine Boundary Layer, J. Geophys. Res., 99, 20989-21003, 1994.
[85]Russell, L.M., and J.H. Seinfeld, Size-and composition-resolved aerosol chemistry and physics model, Aerosol Science and Technology, 28, 403-416, 1998.
[86]Sakai, T., T. Shibata, S.A. Kwon, Y.S. Kim, K. Tamura, Y. Iwasaka, Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: contributions of aerosols from the Asian Continent and the Pacific Ocean, Atmos. Environ., 34, 431-442, 2000.
[87]Sakai, T., T. Shibata, K. Hara, M. Kido, K. Osada, M. Hayashi, K. Matsunaga, and Y. Iwasaka, Raman lidar and insitu aircraft measurements of free tropospheric aerosol particles over Japan, SPIE, 4153, 547-558, 2001.
[88]Sakai, T., T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.S. Kim, K. Tamura, D. Troshkin, S. Hamdi, Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan, Atmos. Environ., 36, 5479-5489, 2002.
[89]Sasano,Y., E.V. Browell, and S. Ismail, Error caused by using a constant extinction/backscatter ratio in the lidar solution, Appl. Opt. 24, 3929-3932, 1985.
[90]Sassen, K., H. Zhao, and B.-K. Yu, Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets, Appl. Opt., 28, 3024-3029, 1989.
[91]Shine, K.P., and P.M.D.F. Forster, The effect of human activity on radiative forcing of climate change: A review of recent developments, Global Planet. Change, 20, 205-225, 1999.
[92]Spinhirne, J.D., J.A. Reagan, and B.M. Herman, Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique, J. Appl. Meteor., 19, 426-438, 1980.
[93]Steven, J. A., J.M. Haywood, E.J. Highwood, J. Li, and P.R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa, Geophys. Res. Lett., 30, 1783-1786, 2003.
[94]Stull, R.B., An introduction to boundary layer meteorology, Kluwer Academic Pulishers, Dordrecht, 1988.
[95]Sugimoto, N., I. Matsui, Z. Liu, A. Shimizu, I. Tamamushi, and K. Asai, Observation of aerosols and clouds using a two-wavelength polarization Lidar during the Nauru99 experiment, Sea and Sky, 76, 93-98, 2000.
[96]Takamura, T., and Y. Sasano, Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications, Opt. Quantum Electron., 19, 293-302, 1987.
[97]Tang, I.N., Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res., 101, 19245-19250, 1996.
[98]Taupin, F.G., M. Bessafi, S. Baldy, and P.J. Bremaud, Tropospheric ozone above the southwestern Indian Ocean is strongly linked to dynamical conditions prevailing in the tropics, J. Geophys. Res., 104, 8057-8066, 1999.
[99]Taylor, D.A., Dust in the wind, Environ. Health Perspect., 110, A80-A87, 2002.
[100]Thompson, A.M., K.E. Pickering, D.P. McNamara, M.R. Schoeberl, R.D. Hudson, J.H. Kim, E.V. Browell, V.W.J.H. Kirchhoff and D. Nganga, Where did tropospheric ozone over southern Africa and the troptical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992, J. Geophys. Res. 101, 24251-24278, 1996.
[101]Thompson A.M., R.D. Hudson., Tropical tropospheric ozone (TTO) maps from Nimbus 7 and Earth Probe TOMS by the modified-residual method: Evaluation with sondes, ENSO signals, and trends from Atlantic regional time series, J. Geophys. Res. 104 26961-26975, 1999.
[102]Toon, O.B., J.B. Pollack, and B.N. Khare, The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminium oxide, and sodium chloride, J. Geophys. Res., 81, 5733-5748, 1976.
[103]Van de Hulst, H.C., Light scattering by small particles, pp.320, Wiley, New York, 1957.
Van de Hulst, H.C., Light scattering by small particles, Dover, New York, pp.414-439, 1981.
[104]Volten, H., O. Munoz, E. Rol, J.F. de Haan, W. Vassen, and J.W. Hovenier, Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, J. Geophys. Res., 106, 17375-17401, 2001.
[105]Wallace, J.M., and P.V. Hobbes, Atmospheric Science: An Introductory Survey. Academic Press Inc., USA, pp.149-236, 1977.
[106]Wandinger, U., A. Ansmann, J. Reichardt, and T. Deshler, Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar, Appl. Opt., 34, 8315-8329, 1995.
[107]Weber, A., S.P.S. Porto, L.E. Cheesman, and J. J. Barrett, High-resolution Raman spectroscopy of gases with cw-laser excitation, J. Opt. Soc. Am., 57, 19-28, 1967.
[108]Wexler, A.S., and J.H. Seinfeld, Analysis of Aerosol Ammonium- Nitrate : Departures from Equilibrium during SCAQS, Atmos. Environ., 26 A, 579-591, 1992.
[109]World Climate Program (WCP), A preliminary Cloudless Standard Atmosphere for Radiation Computation, World Meteorol. Organ., Geneva, 1986.
[110]Zhang, Y., Y. Sunwoo, V. Kotamarthi and G.R., Carmichael, Photochemical oxidant processes in the presence of dust; An evaluation of the impact of dust on particulate nitrate and ozone formation, J. Appl. Meteorol., 33, 813-824,1994.
[111]Zhang, Y., and G.R. Carmichael, The role of mineral aerosol in tropospheric chemistry in east Asia- a model study, Am. Meteorol. Soc., 38, 353-366, 1999.
[112]Zhao, B., and X. Yu, On eastern asian dust storm, Adv. Atmos. Sci., 7, 11-26, 1990.
Zhou. j., G. Yu, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, Lidar observations of Asian dust over Hefei, China, in spring 2000, J. Geophys. Res., 107, 4252, 2002.
[113]Ziemke, J.R., and S. Chandra, Comments on “Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A” by J. Fishman et al., J. Geophys. Res., 103, 13903-13906, 1998.
[114]江智偉,偏振雷達對卷雲的量測,碩士論文,1999。
[115]胡歡陵、胡順星,中國科學院安徽光學精密機械研究所。
[116]柳中明、楊之遠、彭立新、錢正安,沙塵暴的過去、現在和未來,大陸沙塵暴對台灣地區空氣品質影響與預測研討會,1-20,2001。
[117]陳韡鼐,中壢上空10-30公里間的卷雲、氣溶膠、溫度的量測與光散射性質之研究, 博士論文,2002。
[118]陳韡鼐,中央研究院環境變遷研究中心博士後研究員,個人通訊,2005。
[119]陳佩娟,沿海地區大氣中懸浮微粒化學特性分析研究,碩士論文,2003。
[120]林筱雯,東亞生質燃燒的區域影響,碩士論文,2003。
指導教授 倪簡白(Jan-Bai Nee) 審核日期 2005-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明