博碩士論文 88321026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.232.51.247
姓名 余曉倫(Hsiao-Lun Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以兩水相系統提昇Clostridium butyricum產氫之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討通氣量對於樟芝醱酵生產生物鹼之影響
★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究
★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究★ 探討溫度及剪切力對Actinoplanes sp.生產acarbose 之發酵影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用生物法產氫。Clostridium 是目前研究產氫的主要菌
株之一,本實驗所使用的Clostridium butyricum 在生長過程中,主要
的代謝酸有丁酸、醋酸,隨著丁、醋酸濃度的增加會有抑制菌體生長
的情形。本實驗欲利用常見的兩水相系統,探討以polyethylene
glycol(PEG)、Dextran(DEX)組成之兩水相系統,對於不同的物質有不
同的分配率的特徵,來減少或延緩代謝酸的抑制。
本實驗分四部分討論。第一部分是進行兩水相不同濃度組成中
丁、醋酸及菌體的分配情形;第二部分以血清瓶實驗觀察不同的兩水
相系統下,菌株實際的生長情形及產氫量;第三部分是利用2L 醱酵
槽進行批次醱酵;第四部分進行連續式饋料反應,進行饋料的依據一
般而言均是以碳源的使用情形來判斷是否進料,本實驗也是利用此原
則進行進料的動作。分配率實驗結果顯示,無論是丁酸、醋酸的分配
率皆大於1,且高分子濃度愈大,分配率也愈大,代謝酸都較偏好於
PEG-rich 相,而菌體則偏好於DEX-rich 相。適當的兩水相組成不會
抑制菌體的生長。比較有無兩水相系統的批次發酵實驗中,含有兩水
相系統的產氫量較無兩水相系統的產氫效率(Efficiency of H2
formation)約增加了18%。在連續式饋料(fed-batch)實驗中,含有兩水
相系統的產氫量與無兩水相系統的產氫效率則相近,其產氫效率68%
並無低於無兩水相系統的產氫效率67%,兩水相系統在整個醱酵(醱
酵時間36.5 小時)產氫停止前總共進料8 次,無兩水相系統(醱酵時間
36 小時)則進料4 次即停止產氫,含兩水相系統的連續式饋料實驗,
氫氣產率195.6 ml/hr/L,醱酵時間內產氫量共17136 ml。兩水相系統
有提昇Clostridium butyricum 產氫之現象。
關鍵字(中) ★ 兩水相系統
★ 氫氣
關鍵字(英) ★ clostridium butyricum
★ aqueous tow-phase system
★ hydrogen
論文目次 目錄
摘要……………………………………………………………. Ⅰ
目錄……………………………………………………………. Ⅲ
圖索引…………………………………………………………..Ⅴ
表索引………………………………………………………….Ⅶ
第一章緖論……………………………………………………1
1-1 研究動機…………………………………………………1
1-2 研究目的…………………………………………………1
第二章文獻回顧………………………………………………3
2-1 前言………………………………………………………3
2-2 微生物產氫簡介………….………………………………4
2-3 Clostridium…………………………………………………6
2-4 厭氧微生物產氫機制……………………………………8
2-5 環境因子對菌種產氫的影響……………………………14
2-6 兩水相……………………………………………………18
第三章材料與方法……………………………………………23
3-1 實驗材料…………………………………….……………23
3-1-1 微生物……………………………………………………23
3-1-2 培養基組成………………………………………………23
3-1-3 實驗藥品…………………………………………………23
3-1-4 實驗儀器與設備…………………………………………25
3-2 實驗設計與方法…………………………………….……26
3-2-1 菌種保存…………………………………………………26
3-2-2 接種菌體培養……………………………………………27
3-2-3 厭氧微生物反應器………………………………………27
3-2-4 生長曲線的測定…………………………………………28
3-2-5 氣體分析…………………………………………………28
3-2-6 葡萄糖的分析……………………………………………30
3-2-7 代謝酸的分析……………………………………………31
3-3 有機酸對Clostridium butyricum 生長的影響….……….32
3-4 不同高分子濃度組成下的丁酸、醋酸分配率…………32
3-5 PEG、DEX 對醱酵產氫的影響…………………..…...33
3-6 含兩水相系統之批次(batch) 2L 醱酵槽厭氧產氫……...34
3-7 含兩水相系統之連續式饋料(fed-batch) 2L
醱酵槽厭氧產氫….….….….….….….….….….….…...34
第四章結果與討論……………………………………………..36
4-1 有機酸對C.butyricum 生長之影響………………………36
4-2 不同高分子濃度組成下的丁酸、醋酸分配率……...…...37
4-3 ATPS 對醱酵產氫之血清瓶實驗………………………...40
4-4 ATPS 批式(batch)醱酵槽實驗.……………………..……43
4-5 ATPS 連續式饋料(fed-batch)醱酵槽實驗………….……46
第五章結論…………………………………………..………...51
參考文獻………………………………………………..………...53
參考文獻 參考文獻
白明德,“厭氧生物產氫機制與操作策略之研究”,成功大學環境工程
學系,碩士論文,1999,台南。
許淳鈞,“利用混合特定菌種生產氫氣之研究”,國立中央大學化學工
程與材料工程系,碩士論文,2001。
陳志平,“以兩水相萃取系統純化蛋白質”,化工,1995,42。
鄭幸雄、林秋裕、李季眉、曾怡禎、劉文佐、林明瑞、林信一, “厭
氧生物產氫機制及程序控制之技術研發概論”,工業污染防制,2001,
Allan E.K., “Distribution and Activity of Microorganisms in Lakes;
Effect of Physical Processes.”, Ford Y. E. eds., 1993, 47-68, Aquatic
Microbiology., Blackwell Scientific Publications, Inc., Boston.
Andrew J.J., “Partitioning bioreactors”, Current Opioion in
Biotechnology, 1997, 8, 169-174.
Baskir, J.N., Hatton, T.A., and Suter, U.W., “Protein Partitioning in
Two-Phase Aqueous Polymer System.”, Biotechnol. Bioeng., 1989, 34,
541-558.
Brosseau, J.D. and Zajic, J.E., “Hydrogen gas production with
Citrobacter intermedius and Clostridium posteurianum.”, J. chem.. Tech.
Biotechnol., 1982, 32, 496.
C.C. Chen, C.Y. Lin and J.S. Chang, “Kinetics of Hydrogen Production
with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting
Substrate.”, Appl. Microbiol. Biotechnol., 2001, 57, 56-64.
Das, D., and Verizoğlu, T.N.,“Hydrogen Prouction by Biogyical presss:a
surrey of liter.” International J. Hydrogen Energy., 2001, 26, 13-28.
Dong, X., Philippe, J.Y.M.J., Schyns, and Alfons, J.M.S., “Degradation of
galactomannan by a Clostridium butyricum strain.”, Antonie van
Leeuwenhoek, 1991, 60, 109-114.
Eva R. K., and Z.Y. Cao, “Clostridial Strain Degeneration.”, FEMS
Microbiology Review, 1995, 17, 307-315.
Fisher, F., and Goodall, A.H., “Membrane fusion by virsues and chemical
agents.”, Tech. Cell. Physiol., 1981, P115, 1-36.
Gerhard, G., “ Bacterial Metabolism .“ , Spring-Verlag New York, 1986,
208-282.
Gest, H., and Peck, H.D., Jr., “A Study of te Hydrogenlyase Reaction
with systems derived from normal and anaerobic coli-aerogenes
bacteria.”, J. Baceriol., 1955, 70, 326.
Gray, C.T., and Gest, H., “biological formation of Moleculat Hydrogen.”,
Science, 1965, 148, 186.
Heydrickx, M., Vansteenbeeck, A., Vos De P. and Ley De J., “Hydrogen
Gas Production from Continuous Fermentation of Glucose in a Minimal
Medium with Clostridium butyricum LMG 1213t1.”, System. Appl.
Microbiol., 1986, 8, 239-244.
Heydrickx, M., Vos De P., Thibau, B., Stevens, P., and Ley De J. ,” Effect
of Various External Factors on the Fermentative Production of Hydrogen
Gas from Glucose by Clostridium butyricum Strains in Batch Culture .“ ,
System. Appl. Microbiol., 1987, 9, 163-168.
Heydrickx, M., Vos De P., Vancanneyt, M., and Ley De J.,“ The
fermentation of Glycerol by Clostridium butyricum LMG 1212t2 and
1213t1 and C. pasteurianum LMG 3285.”, Appl. Microbiol. Biotechnol., ,
1991, 34, 637-642.
Hunddleston, J., Veide, A., Kohler, K., Flanagan, J., et al., “The
Molecular Basis of Partitioning in Aqueous Two-Phase System.”, Trends
Biotechnol., 1991, 9, 381-388.
Johns, A. T., “The Mechanism of Popionic Acid Formation by Veillonella
gazogenes.”, J. Gen. Microbiol., 1951, 5, 326.
Johns, A. T. and Barker, H. A., “Methane formation, fermentation of
ethanol in absence of CO2 by methanobacillus omelianskii.”, J. Bacterial.,
1960, 80, 837.
Joseph, S. T., and Eva, R. K ., “ Intracellular Conditions Required for
Initiation of Solvent Production by Clostridium acetobutylicum.”, Appl.
and Environ. Microbiol., 1986, 52(1), 86-91.
J.P. Chen, and M.S. Lee, “Enhanced Production of Serratia marcescens
chitinase in PEG/dextran Aqueous Two-Phase Systmes.”, Emzyme and
Microbial Technology, 1995, 17, 1021-1027.
Jungermann, K., Thauer, P. K., Leimenstoll, G., and Decker, K.,
“Fenction of Reduced Pyridine Nucleotide-ferredoxin Oxidoreductases in
saccharolytic clostridia.”, Biochim. Biophys. Acta, 1973, 305, 268-280.
Jun M. Y., Kim S. K. and Kim S. Y., “Riboflavin-Sensitized Phooxidation
of Ascorbic Acid;Kinetics and Amino Acid Effects.”, Food Chemistry,
1995, 53(4), 397-403.
Karube, I., Suzuki, S., Matsunaga, T., Kuriyama S., and, “Biochemical
Energy Conversion by Immobilized Whole Cells.”, Ann. N.Y. Acad. Sci.,
1981, 369, 91-98.
Karube, I., Urano, N., Matsunaga, T., and Suzuki, S., “ Hydrogen
Production from Glucose by Immobilized Growing Cells of Clostridium
butyricum.”, Eur. J. Appl. Microbiol. Biotechnol., 1982, 16, 5-9.
Kataoka, N., Miya, A., and Kiriyama, K., “Studieson Hydrogen
Production by Continuous Cultrue System of Hydrogen-Producing
Anaerobic Bacteria.”, Wat. Sci. Tech., 1997, 36, 41-47.
Laurence, G., Christian, C., Isabel, V., and Philippe, S. ,“ Regulation of
Metabolic Shifts in Clostridium acetobutylicum ATCC 824.” , FEMS
Microbiology Reviews, 1995, 17, 287-297.
Lawier, A., “Walker Bill to boost hydrogen sparks democratic
grumbling.”, Science, 1995, 267, 613.
Majizat, A., Mitsunori, Y., Mitsunori, W., Michimasa, N., and Jun'ichiro,
M., “Hydorgen gas production from glucose and its microbial kinetics in
anaerobic system.”,Wat. Sci. Tech., 1986, 36(6-7), 279-286.
Mattiasson, B., and Kaul, K., “Separation, Recovery, and Purification in
Biotechnology.”, American Chemical Society, 1986, 78-92.
May, P. S., Blanchard, G. C., and Foley, R. T., “ Biochemical hydrogen
generators:18th Annual Proceedings Power Sources Conferences.”, 1964,
May 19-21.
Mitsui, A. In., “Solar-Hydrogen Energy System.”, Pergamon, Oxford and
New York, 1979, 171.
Nandi, R., and Sengupta, S.,“Microbial Production of Hydrogen: An
Oveview.”, Rohrback, G. H., Scott, W. R., and Canfield, J. H., in
proceedings of the 16th Annual Power Sources Conference, 18, 1962.
Ozadali, F., Glatz, B. A., and Glatz, C. E., “Fed-batch fermentation with
and without on-line Extraction for Propionic and acetic acid production
by Propionibacterium acidipropionici.”, Appl. Microbiol. Biotechnol.,
1996, 44, 710-716.
Odette H.J., Roberto F.L., Terreni, M., and Jose M.G., “Use of Aqueous
Two-Phase Systems for in situ Extraction of Water Soluble Antobiotics
During Their Synthesis by Enzymes Immobilized on Porous Supports.”
Biotechnol. Bioeng., 1998, 59(1), 73-79.
Pakes, W.C.C. and Jollyman, W.H., “The Bacterial Decomposition of
formic acid into CO2 and H2.”, J. Chem. Soc., 1901, 79, 386.
Patrick, C. Hallenbeck, and John, R. Benemann, “Biological Hydrogen
Production;Fundamentals and Limiting Processes.”, International Journal
of Hydrogen Energy, 2002, 27, 1185-1193.
Planas, J., Rådström, P., Tjerneld, F., and Hahn-Hägerdal, B., “Enhanced
Production of Lactic Acid through the use of a novel aqueous two-phase
system as an extractive fermentation system.”, Appl. Microbiol.
Biotechnol., 1996, 45, 737-743.
Planas, J., Lefebvre, D., Tjerneld, F., and Hahn-Hägerdal, B., “Analysis
of Phase Composition in Aqueous Two-Phase Systems Using a
Two-Column Chromatographic Method : Application to Lactic Acid
Production by Extractive Fermentation.”, Biotechnol. Bioeng., 1997, 54,
303-311.
Rheinheimer, G., “ The Influence of Environmental Factors on the
Development of Microorganisms.”, Rheinheimer G. eds., Aquatic
Microbiology 4th ed., pp.111-147, Baffins Lane, 1992, England.
Rito-Palomares, M., and Lyddiatt, A., “Short Communication Practicl
Implementation of Aqueous Two-Phase Processes for Protein.”, J. Chem.
Technol. and Biotechnol., 2000, 75, 632-638.
Sinha, J., Dey, P.K., and Panda, T., “Aqueous Two-Phase : the System of
Choice for Extractive Fermentation.”, Appl. Microbiol. Biotechnol., 2000,
54, 476-486.
Suzuki, S., Karube, I., Matsunga, T., and Kuriyama, S.,” Biochemical
energy conversion by immobilized whole cells of Clostridium
butyricum.”, Biochimie, 1980, 62, 353.
Suzuki, S., Karube, I., Matsunga, T., and Kuriyama, S.,” Biochemical
Energy Conversion by Immobilized whole Cells.”, Annals New York
Academy of Sciences, 1983, 133-143.
Taguchi, F., Chang, J. D., Takiguchi, S., and Morimoto, M., “Efficient
Hydrogen Production from Starch by a bacterium isolated from termites.”,
1992, 73, 244-245.
Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T., Hasegawa, K.,
and Morimoto, M., “Isolation of a hydrogen productionbacteria,
Clostridium beijerinckii strain AM 21B from termites.”, Can. J.
Microbiol., 1993, 39, 726-730.
Taguchi, F., Mizukami, N., Hasegawa, K., Hasegawa, K., and Saito-Taki,
T., “Direct conversion of cellulosic materials to hydrogen by Clostridium
sp. Strain no. 2.”, Enzyme Microbiol. Technol., 1995, 17, 147-150.
Taguchi, F., Mizukami, N., Saito-Taki, T., and Hasegawa, K., “Hydrogen
production from continuous fermentation of xylose during growth of
Clostridium sp. Strain no.2 .”, Can. J. Microbiol. , 1995, 41, 536-540.
Taguchi, F., Hasegawa, K., Saito-Taki, T., and Hara, K., “Simultaneous
production of xylanase and hydrogen using xylan in batch culture of
Clostridium sp. strainX53.”, J. Ferment. Bioeng., 1996, 81(2), 178-180.
Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T., and Hara, K.,
“Continuous hydrogen Production by Clostridium sp. Strain No.2 from
Cellulose Hydrolysate in an Aqueous Two-Phase System.”, Journal of
Fermentation and Bioengineering, 1996, 82, 80-83.
Thauer, R. K., Jungermann, K., and Decker, K., “Energy conservation in
chemotrophic anaerobic bacteria.”, Baceriol. Rev., 1977, 41, 100.
Thierry Colin, André Bories, Céline Lavigne, and Guy Moulin, “Effects
of Acetate and Butyrate During Glycerol Fermentation by Clostridium
butyricum.”, Current Microbiology, 2001, 43, 238-243.
Tjerneld, F., Persson, I., Albertsson, P., and Hahn-Hägerdal, B.,
“Enzymatic Hydrolysis of Cellulose in Aqueous Two-Phase Systems. II.
Semicontinuous Conversion of a Model Substrate, Solka Floc BW 200.”,
Biotechnol. Bioeng., 1985, 27, 1044-1050.
Tjerneld, F., Persson, I., Albertsson, P., and Hahn-Hägerdal,
B.,“Enzymatic Hydrolysis of Cellulose in Aqueous Two-Phase Systems. I.
Partition of Cellulases from Trichoderman reesei.”, Biotechnol. Bioeng.,
1985, 27, 1036-1043.
Twarog, R., and Wolfe, R. S., “Role of Butyryl Phosphate in the Energy
Metabolism of Clostridium tetanomorphum.”, J. Bacteriol., 1965, 86,
112.
Walter, H., Brooks, D.E., and Fisher, D., “Partitioning in Aqueous
Two-Phase Systems.”, Academic press, 1985.
Wu, Z., and S.T. Yang, “ Extractive Fermentation for Butyric Acid
Production from Glucose by Clostridium tyrobutyricum.”, Biotechnol.
Bioeng., 2003, 82, 93-102.
Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., and Takasaki, Y.,
“Microbial Hydrogen Production from Sweet Potato Starch Residue.”,
Journal of Bioscience and Bioengineering, 2001, 91(1), 58-63.
Yun J.K., Kaul, R., and Mattiasson, B., “Extractive Lactic Acid
Fermentation in Poly(ethyleneimine)-Based Aqueous Two-Phase
System.”, Biotechnol. Bioeng., 1996, 50, 280-290.
Zhu, H., Wakayama, T., Asada, Y., and Miyake, J., “Hydrogen Production
by four cultures with Participation by Anoxygenic Phototrophic
Bacterium and Anaerobic Bacterium in the presence of NH4
+.”, J.
Hydrogen Energy, 2001, 26, 1149-1154.
指導教授 徐敬衡(Chin-Hung Shu) 審核日期 2003-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明