博碩士論文 88321045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.221.145.174
姓名 李雅雯( Yi-Wen Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Ribonuclease A 於逆微胞系統中的復性及其界面現象之研究
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討
★ 微卡計在固液吸附機制的研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制★ 微卡計於液膜交互作用力量測之應用----微脂粒系統穩定度之探討
★ 三團聯聚合物(PF-127)和磷脂質間交互作用力量測和微脂粒穩定度之探討★ 蛋白質與吸附基材表面作用機制之熱力學分析及其於液相層析之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 逆微胞法復性可解決基因工程中因蛋白質濃度過高形成內聚體(inclusion body)的問題。本研究以AOT與isooctane形成的逆微胞進行Ribonuclease A(RNase A)的復性,深入探討界面層在復性過程中所扮演的角色。
首先,探討RNase A溶入逆微胞的特性與穩定性:第一,透過活性量測實驗得知native RNase A在30小時內的活性是穩定的。第二,透過DLS(Dynamic light scatter)量測,native RNase A溶入逆微胞中會使得其粒徑略增,而denatured RNase A本身結構鬆散,粒徑較大,因此溶入會使逆微胞粒徑增加量較native大很多。第三,利用電導度測量不同系統產生percolation現象溫度的差異,含有native RNase A的系統產生percolation的溫度會隨其與逆微胞界面層的靜電作用力而有差別;而denatured RNase A則由於疏水作用力均會提升界面硬度,當RNase A與界面層為靜電吸引力時,效果更明顯。以上的結果顯示添加RNase A對逆微胞的結構與特性會有影響。
改變逆微胞的粒徑與水相的pH值,以改變RNase A與界面層間的作用力,進行復性實驗,探討RNase A於逆微胞內的復性,逆微胞分子界面層所扮演的角色。結果發現當RNase A吸附在逆微胞界面層上時,逆微胞的粒徑大小並不會影響復性。且RNase A吸附在逆微胞界面層上時,復性效果較佳,若RNase A與逆微胞分子界面層為靜電斥力或位於水相中,復性效果則較差,因此可說明逆微胞界面層對復性是有相當助益的,並非只提供孤立蛋白質分子的作用。配合螢光光譜實驗說明構形的摺疊所需時間與活性的恢復所需的時間有相當大的落差,可能是因為Tyr之位置不在活性區,所以螢光之的結果並無法直接與活性恢復結果相關。
由以上論述可知逆微胞界面層對RNase A的復性過程有幫助,提供蛋白質在較疏水狀態時吸附的界面,以進行正確的構形摺疊,此與chaperone提供疏水界面,使蛋白質吸附以進行構形摺疊的原理是相同的。
摘要(英) A novel process utilized by reverse micelles has been developed to resolve the inclusion body which produced by recombinant technology. Refolding of denatured ribonuclease A (RNase A) used reverse micelles formulated with AOT in isooctane was studied as a model system to explore the mechanism of protein refolding at micellar interface.
The activity of native RNase A in reverse micelles is stable within 30 hours by enzyme activity measurement. The data measured by using DLS (dynamic light scattering), it was found that the average diameter of reverse micelles with denatured RNase A were larger than the empty ones, however, for native RNase A in reverse micelles, the effect is minimum. Solubilizing denatured RNase A in reverse micelles make the AOT interface stiff and repress the percolation threshold between reverse micelles by the conductivity measurement. Native RNase A would change the percolation behavior with the surface changes. This result indicated that solubilized RNase A in reverse micelles would interfere the interactions between AOT surfactants and RNase A, and it would change the AOT interface structure.
To investigate the role of interface played in refolding, the effects of operational parameters such as Wo(=[H2O]/[AOT]) and pH were examined on refolding. The denatured RNase A adsorpted onto the micellar surface due to hydrophobic and electrostatic interactions. Denatured RNase A adsorpted onto the micellar interface resulting in a better enzyme activity recovery, indicating that micellar interface play an important role for RNase A refolding. From fluorescence measurement, structure refolding can finish immediately and activity recovering need about thirty hours.
The mechanism of the micelle-assisted refolding was proposed on the basis of interaction between micellar interface and RNase A. In the present study, we show that the chaperone-like function of reverse micelles can be utilized in refolding of RNase A.
關鍵字(中) ★ 電導度
★ 界面
★ 摺疊
★ 復性
★ 逆微胞
★ 核糖核酸酵素
★ 螢光
關鍵字(英) ★ refolding
★ AOT
★ ribonuclease A
★ percolation
論文目次 目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章 緒論 1
第二章 實驗原理與文獻回顧
2.1 蛋白質的結構 2
2.1.1 蛋白質的結構 2
2.1.2 內聚體與復性 4
2.2 蛋白質的變性與復性 5
2.2.1 蛋白質的變性 5
2.2.2 蛋白質的復性 7
2.2.3 蛋白質復性的方法 8
2.2.3.1 ILC復性 9
2.2.3.2 Microsphere復性 11
2.2.3.3 Chaperone復性 13
2.2.3.4逆微胞復性 13
2.2.4酵素復性的動力學 15
2.2.5 核糖核酸?的變性與復性 17
2.2.5.1 核糖核酸?的介紹 17
2.2.5.2 核糖核酸?的穩定性 19
2.2.5.3 核糖核酸?的變性與復性 20
2.2.5.4 不同狀態核糖核酸?的粒徑 21
2.3 界面活性劑系統 22
2.3.1 界面活性劑與逆微胞 22
2.3.1.1 界面活性劑的構造與分類 22
2.3.1.2 微胞與逆微胞 23
2.3.1.3界面活性劑參數與幾何形狀 24
2.3.1.4 逆微胞的系統參數 25
2.3.1.5 AOT/isooctane/water 26
2.3.2 含有蛋白質的逆微胞 27
2.3.2.1蛋白質溶於逆微胞中的方法 27
2.3.2.2蛋白質與逆微胞分子數的比率 27
2.3.3 逆微胞的特性與應用 28
2.4 界面現象的測量 29
2.4.1 逆微胞的percolation現象 29
2.4.2 蛋白質對逆微胞粒徑的影響 33
2.4.3 蛋白質對逆微胞結構與percolation的影響 35
2.4.4 界面電位的量測 37
2.4.5 粒徑儀的量測 38
2.5 螢光光譜 40
第三章 實驗系統 41
3.1 研究目的 41
3.2實驗藥品與儀器設備 43
3.2.1 實驗藥品 43
3.2.2 儀器設備 44
3.3 實驗系統與設計目的 45
3.3.1 RNase A在逆微胞中的特性與穩定性46
3.3.1.1界面電位的量測 46
3.3.1.2活性的變化 47
3.3.1.3粒徑的量測 47
3.3.1.4電導度測定 48
3.3.2 denatured RNase A的復性 49
3.3.2.1 pH值的改變 49
3.3.2.2水含量不同 49
3.3.2.3螢光光譜 49
3.4 實驗方法 50
3.4.1溶液的配製 50
3.4.1.1 AOT/isooctane/buffer 的配製 50
3.4.1.2變性劑的配製 50
3.4.1.3復性劑的配製 51
3.4.1.4受質液的配製 51
3.4.2 實驗流程 51
3.4.2.1製備固體己變性的蛋白質 51
3.4.2.2電導度實驗 52
3.4.2.3粒徑的測量 52
3.4.2.4界面電位的測量 52
3.4.2.5 RNase A的復性 53
3.4.2.6分析RNase A的活性 53
3.4.2.7螢光光譜的測量 53
第四章 結果與討論 54
4.1 RNase A在逆微胞中的特性與穩定性 54
4.1.1 界面電位的量測 54
4.1.2 活性的變化 56
4.1.3 粒徑的量測 58
4.1.4 電導度測定 61
4.2 denatured RNase A的復性 68
4.2.1 水含量與pH值的不同 68
4.2.2 螢光光譜 79
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
第六章 參考文獻 88
[ 參考文獻]
1. Shimizu, H., K. Fujimoto & H. Kawaguchi, “Renaturation of reduced ribonuclease A with a microsphere-induced refolding system”, Biotechnology Progress, 16, 248-253(2000)
2. Yoshimoto, M., R. Kubio, Q. Yang & J. Miyake, “Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase”, Journal of Chromatography B, 712, 59-71(1998)
3. Dong, X.-Y., H. Yang & Y. Sun, “Lysozyme refolding with immobilized GroEL column chromatography”, Journal of Chromatography A, 878, 197-204(2000)
4. Conn, E. E. & P. K. Stumpf, Outlines of Biochemistry, Wiley(1966)
5. Georgiou, G. & E. D. Bernardez-Clerk, Protein Refolding, p.1-49 American Chemical Society(1991)
6. McKee, T., “Peptide and protein”, Biochemistry, Wm. C. Brown Publishers, 78-116(1996)
7. Neurath, H., J. P. Greenstein, F. W. Putnam, J. O. Erickson, “The chemistry of protein denaturation”, Chemical Reviews, 32, 157-265(1943)
8. Mamoru, M., N. Daisuke & S. Tomoya, “Difference between guanidinium chloride and urea as denaturants of globular protein: The possibility of application to improved refolding process”, Chemical and Pharmaceutical Bulletin, 40, 550-552(1992)
9. Hagen, A. J., T. A. Hatton, and D. I. C. Wang, “Protein refolding in reversed micelles”, Biotechnology and Bioengineering, 35, 955-965(1990)
10. Hagen, A. J., T. A. Hatton & D. I. C. Wang, “Protein refolding in reversed micelles: Interactions of the protein with micelle components”, Biotechnology and Bioengineering, 35, 966-975(1990)
11. Hevenhan, D. L. & E. D. B. Clark, “Oxidative renaturation of lysozyme at high concentration”, Biotechnology and Bioengineering, 54, 221-230, 1997
12. Goto, M., Y. Hashimoto, T.-a. Fujita, T. Ono & S. Furusaki, ” Important parameters affecting efficiency of protein refolding by reversed micelles”, Biotechnology Progress, 16, 1079-1085(2000)
13. Lyles, M. M. & H. F. Gilbert, ”Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: Dependence the rate on the composition of the redox buffer”, Biochemistry, 30, 613-619(1991)
14. Yoshimoto, M. & R. Kubio, “Oxidative refolding of denatured/ reduced lysozyme utilizing the chaperone-like function of liposomes and immobilized liposome chromatography”, Biotechnology Progress, 15, 480-487(1999)
15. Yoshimoto, M., T. Shimanouchi, H. Umakoshi & R. Kuboi, ” Immobilized liposome chromatography for refolding and purification of protein”, Journal of Chromatography B: Biomedical Sciences and Applications, 743, 93-99(2000)
16. Shimizu, H., K. Fujimoto & H. Kawaguchi, “Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres”, Colloids and Surfaces B: Biointerfaces, 18, 137- 144(2000)
17. Guise, A. D. & J. B. Chaudhuri, “Recovery and reuse of molecular chaperone GroEL for in vitro protein refolding”, Biotechnology Progress, 14, 343-346(1998)
18. Goldberg, M., E. R. Rudolph & R. Jaenicke, “A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme”, Biochemistry, 30, 2790-2797(1991)
19. Kiefhaber, T., R. Rudolph, H.-H. Kohler & J. Buchner , “Protein aggregation in vitro and in kinetic competition between folding and aggregation”, Bio/Technology, 9, 825-829(1991)
20. 陳美芳, “酸鹼度和相對黏度對於神經毒蛋白的開散與回疊路徑的影響” ,國立台灣大學化學所碩士, 2000年
21. Anfinsen, C. B., “Principles that govern the folding of protein chains”, Science, 181, 223-230(1973)
22. Oxender, D. L., C. F. Fox, Protein engineering, Ch 11(1987)
23. Santoro, J., C. Gonzalez, M. Bruix, J. L. Neira, J. L. Nieto, J. Herranz & M. Rico, “High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy”, Journal of Molecular Biology, 229, 722-734(1993)
24. Richards, F. M., H.W. Wyckoff, in: The Enzymes, p.647-, Academic Press, New York(1971)
25. Pan, X. M., X. R. Sheng, S. M. Yang & J. M. Zhou, “Probing subtle acid-induced conformational changes of ribonuclease A by electrospray mass spectrometry”, Federation of European Biochemical Societies, 402, 25-27(1997)
26. Boyer, M., M.-O. Roy & M. Jullien, “ Dynamic light scattering study of percrystallizing ribonuclease solutions”, Journal of Crystal Growth, 167, 212-220(1996)
27. Noppert, A., K. Gast & M. Muller-Frohne, “Reduced-denatured ribonuclease A is not in compact state”, Federation of European Biochemical Societies, 380, 179-182(1996)
28. Katoh, S., Y. Sezai, T. Yamaguchi, Y. Katoh, H. Yagi, D. Nohara, "Refolding of enzymes in a fed-batch operation", Process Biochemistry, 35, 297-300(1999)
29. Gasr, K., D. Zirwer & H. Damaschun, “Ribonuclease T1 has different dimensions in the thermally and chemically denatured states: a dynamic light scattering study”, Federation of European Biochemical Societies, 403, 245-248(1997)
30. 趙承琛, ”界面科學基礎”, 第八章, 復文書局(民國74年)
31. Pileni, M. P., Structure and reactivity in reverse micelles, Elsever Science Publishers B. V.(1989)
32. Pileni, M. P., ” Water-in-Oil colloidal droplets used as microreactors “, Advance in Colloid and Interface Science, 46, 139-163(1993)
33. Schomacker, R. & G. A. Braun, “Ultrafiltration of reverse micelles in the ternary system AOT/Isooctane/Water”, Langmuir , 12, 2362-2366(1996)
34. Pileni, M. P. “Reverse micelles as microreactors”, Journal of Physical Chemistry, 97, 6961-6973(1993)
35. Luisi, P. L. & J. Magid, Critical Reviews in Biomedical Engineering, 20, 409-474(1986)
36. Koper, G. J. M., W. F. C. Sager, J. Smeets & D. Bedeaux, “Aggregation in oil-continuous water/sodium bis(2-ethylhexyl)sulfosuccinate /oil microemulsions”, Journal of Physical Chemistry, 99, 13291-13300(1995)
37. Rahaman, R. S. & T. A. Hatton, “Structural characterization of α-Chymotrypsin-containing AOT reversed micelles “, Journal of Physical Chemistry, 95, 1799-1811(1991)
38. Hashimoto, Y., T. Ono, M. Goto & T. A. Hatton, “Protein refolding by reversed micelles utilizing solid-liquid extraction technique”, Biotechnology and Bioengineering, 57, 620-623(1998)
39. Hayes, D. G. “Mechanism of protein extraction from the solid state by water-in-oil microemulsions”, Biotechnology and Bioengineering, 53, 583-593(1997)
40. Melo, E. P., P. Fojan, J. M. S. Cabral & S. B. Petersen, “Dynamic light scattering of cutinase in AOT reverse micelles”, Chemistry and Physics of Lipids, 106, 181- 189(2000)
41. Kadam, K. L., “ Reverse micelles as a bioseparation tool”, Enzyme and Microbial Technology, 8, 266-273(1986)
42. Nishiki, T., I. Sato, A. Muto & T. Kataoka, “Mass transfer characterization in forward and back extractions of lysozyme by AOT-isooctane reverse micelles across a flat liquid-liquid interface”, Biochemical Engineering Journal, 1, 91-97(1998)
43. Cazabat, A. M., D. Chatenay, P. Guering, D. Langevin, J. Meunier & O. Sorba, “Percolation and critical point in microemulsions “, Surfactant in Solutions, 3, 1737-1744(1982)
44. Bhattacharya, S., J. P. Stokes, M. W. Kim & J. S. Huang, “Percolation an oil-continuous microemulsion “, Physical Review Letters, 55, 1884-1887(1985)
45. DeGennes, P. G. & C. Taupin, “Micro-emulsions and the flexibility of oil-water interfaces”, Journal of Physical Chemistry, 86, 2294-2304(1982)
46. Grest, G. S., I. Webman, S. A. Safran & A. L. R. Bng, “Dynamic percolation in microemulsions “, Physical Review A, 33, 2842-2845(1986)
47. Jada, A., J. Lang & R. Zana, ”Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions “, Journal of Physical Chemistry, 93, 10-12(1989)
48. Eicke, H. F., R. Hilfiker & H. Thomas, “Connectivity controlled charge transport in water-in-oil microemulsions”, Chemical Physics Letters, 125, 295-298(1986)
49. Maitra, A., C. Mathew & M. Varshney, “Closed and open structure aggregates in microemulsions and mechanism of percolative Conduction”, Journal of Physical Chemistry, 94, 5290-5292(1990)
50. Alexandridis, P., J. F. Holzwarth & T. A. Hatton, “Thermodynamics of droplet clustering in percolating AOT water-in-oil microemulsions “, Journal of Physical Chemistry, 99, 8222-8232 (1995)
51. Eastoe, J., T. F. Towey, B. H. Robinson, J. Williams & R. K. Heenan, “Structures of metal bis(2-ethylhexyl) sulfosuccinate aggregates in cyclohexane “, Journal of Physical Chemistry, 97, 1459-1463(1993)
52. Pileni, M. P., G. Cassin, F. Michel & F. Pitre, “Structural study of AOT reverse micelles containing native or modified proteins: Influence of surfactant-enzyme interaction”, Colloids and Surfaces B: Biointerfaces, 3, 321-332(1995)
53. Michel, F. & M. P. Pileni, “Synthesis of hydrophobic ribonuclease by using reverse micelles. Structure study of AOT reverse micelles containing ribonuclease derivatives”, Langmuir, 10, 390-394(1994)
54. Pitre, F., C. Reguaut & M. P. Pileni, “Structural study of AOT reverse micelles containing native and modified α-Chymotrypsin “, Langmuir, 9, 2855-2860 (1993)
55. Chatenay, D., W. Urbach, C. Nicot, M. Vacher & M. Waks, “Hydrodynamic radii of protein-free and protein containing reverse micelles as studied by fluorescence recovery after fringe photobleaching, perturbations introduced by myelin basic protein uptake “, Journal of Physical Chemistry, 91, 2198-2201(1987)
56. Brochette, P., C. Petit & M. P. Pileni,”Cytochrome C in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles: Structure and reactivity “, Journal of Physical Chemistry, 92, 3505-3511(1988)
57. Huruguen, J. P., M. Authier, J. L. Greffe & M. P. Pileni, “Percolation process induced by solubilizing Cytochrome C in reverse micelles “, Langmuir, 7, 243-249(1991)
58. 郭至聖, “以鹽類、胺基酸、蛋白質探討AOT/水/烷類 W/O微乳液系統中percolation現象的影響機制” ,國立中央大學化學工程所碩士, 1997年
59. Petit, C., P. Brochette & M. P. Pileni, “Hydrated electron in reverse micelles:3. Distribution of probes such as ions and hydrophilic proteins”, American Chemical Society, 90, 6517-6521(1986)
60. Hunter, R. J., Introduction to modern colloidal science, Oxford, university Press Inc., New York(1993)
61. Pecoro, P., Dynamic Light Scattering, Plenum Press Inc., New York(1979)
62. Teale, F. W. & G. Weber, “Ultraviolet fluorescence of the aromatic amino acids”, The Biochemical Journal, 65, 476-482(1957)
63. Wetlaufer, D. B., Advances in Protein Chemistry, 17, 303-390(1962)
64. Kinugasa, T., K. Watanabe & H. Takeuchi, ”Activity and conformation of lysozyme in reversed micellar extration”, Industrial and Engineering Chemistry Research, 31, 1827-1829(1992)
65. Wolf, R. & P. L. Luisi, “Micellar solubilization of enzymes in hydrocarbon solvents- enzyme activity and spectroscopic properites of ribonuclease in n-octane”, Biochemical and Biophysical Research Communications, 89, 209-217(1979)
66. Naoe, K., T. Kai, M. Kawagoe & M. Imai, “Extraction of flexibly structured protein in AOT reverse micelles: The flexible structure of protein is the dominant factor for its incorporation into reverse micelles “, Biochemical Engineering Journal, 3, 79-85(1999)
67. Creighton, T. E., “Intermediates in the refolding of reduced Ribonuclease A”, Journal of Molecular Biology, 129, 411-431(1979)
68. Shastry, M. C. R. & M. R. Eftink*, “ Reversible thermal unfolding of ribonuclease T1 in reverse micelles”, Biochemistry, 35, 4094-4101(1996)
69. Lakowicz, J. R., B. Kierdaszuk, P. Callis, H. Malak & I. Gryczynski, “Fluorescence anisotropy of tyrosine using one-and two-photon excitation”, Biophysical Chemistry, 56, 263-271(1995)
70. Crook, E. M., A. P. Mathias & B. R. Rabin, “Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2’: 3’-phosphate”, Biochemistry, 74, 234-238(1960)
71. Chiang, C.-L., “Activity and stability of lipase in Aerosol-OT/ isooctane reverse micelles”, Biotechnology Techniques, 13, 453-457(1999)
72. A. Sanchez-Ferrer & F. Garcia-Carmona, ”Biocatalysis in reverse self-assembling structures: Reverse micelles and reverse vesicles”, Enzyme and Microbial Technology, 16, 409-415(1994)
73. Roux, P., M. Delepierre, M. E. Goldberg & A. F. Chaffotte, “Kinetics of secondary structure recovery during the refolding of reduced hen egg white lysozyme”, The Journal of Biological Chemistry, 272, 24843-24849(1997)
74. Rozema, D. & S. H. Gellman, ”Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation, Biochemistry, 35, 15760-15771(1996)
75. Karpe, P. & E. Ruckenstein, “The enzymatic superactivity in reverse micelles: Role of the dielectric constant”, Journal of Colloid and Interface Science, 141, 534-552(1991)
76. Juminaga, D., W. J. Wedemeyer, R. Garduno-Juarez, M. A. McDonald & H. A. Scheraga, ”Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonucleae A: A study of tyrosine-to -phenylalanine mutants”, Biochemistry, 36, 10131-10145(1997)
77. Naoe, K., T. Kai, M. Kawagoe & M. Imai, “Extraction of flexibly structured protein in AOT reverse micelles: the flexible structure of protein is the dominant factor for its incorporation into reverse micelles “, Biochemical Engineering Journal, 3, 79-85(1999)
參考文獻 1. Shimizu, H., K. Fujimoto & H. Kawaguchi, “Renaturation of reduced ribonuclease A with a microsphere-induced refolding system”, Biotechnology Progress, 16, 248-253(2000)
2. Yoshimoto, M., R. Kubio, Q. Yang & J. Miyake, “Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase”, Journal of Chromatography B, 712, 59-71(1998)
3. Dong, X.-Y., H. Yang & Y. Sun, “Lysozyme refolding with immobilized GroEL column chromatography”, Journal of Chromatography A, 878, 197-204(2000)
4. Conn, E. E. & P. K. Stumpf, Outlines of Biochemistry, Wiley(1966)
5. Georgiou, G. & E. D. Bernardez-Clerk, Protein Refolding, p.1-49 American Chemical Society(1991)
6. McKee, T., “Peptide and protein”, Biochemistry, Wm. C. Brown Publishers, 78-116(1996)
7. Neurath, H., J. P. Greenstein, F. W. Putnam, J. O. Erickson, “The chemistry of protein denaturation”, Chemical Reviews, 32, 157-265(1943)
8. Mamoru, M., N. Daisuke & S. Tomoya, “Difference between guanidinium chloride and urea as denaturants of globular protein: The possibility of application to improved refolding process”, Chemical and Pharmaceutical Bulletin, 40, 550-552(1992)
9. Hagen, A. J., T. A. Hatton, and D. I. C. Wang, “Protein refolding in reversed micelles”, Biotechnology and Bioengineering, 35, 955-965(1990)
10. Hagen, A. J., T. A. Hatton & D. I. C. Wang, “Protein refolding in reversed micelles: Interactions of the protein with micelle components”, Biotechnology and Bioengineering, 35, 966-975(1990)
11. Hevenhan, D. L. & E. D. B. Clark, “Oxidative renaturation of lysozyme at high concentration”, Biotechnology and Bioengineering, 54, 221-230, 1997
12. Goto, M., Y. Hashimoto, T.-a. Fujita, T. Ono & S. Furusaki, ” Important parameters affecting efficiency of protein refolding by reversed micelles”, Biotechnology Progress, 16, 1079-1085(2000)
13. Lyles, M. M. & H. F. Gilbert, ”Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: Dependence the rate on the composition of the redox buffer”, Biochemistry, 30, 613-619(1991)
14. Yoshimoto, M. & R. Kubio, “Oxidative refolding of denatured/ reduced lysozyme utilizing the chaperone-like function of liposomes and immobilized liposome chromatography”, Biotechnology Progress, 15, 480-487(1999)
15. Yoshimoto, M., T. Shimanouchi, H. Umakoshi & R. Kuboi, ” Immobilized liposome chromatography for refolding and purification of protein”, Journal of Chromatography B: Biomedical Sciences and Applications, 743, 93-99(2000)
16. Shimizu, H., K. Fujimoto & H. Kawaguchi, “Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres”, Colloids and Surfaces B: Biointerfaces, 18, 137- 144(2000)
17. Guise, A. D. & J. B. Chaudhuri, “Recovery and reuse of molecular chaperone GroEL for in vitro protein refolding”, Biotechnology Progress, 14, 343-346(1998)
18. Goldberg, M., E. R. Rudolph & R. Jaenicke, “A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme”, Biochemistry, 30, 2790-2797(1991)
19. Kiefhaber, T., R. Rudolph, H.-H. Kohler & J. Buchner , “Protein aggregation in vitro and in kinetic competition between folding and aggregation”, Bio/Technology, 9, 825-829(1991)
20. 陳美芳, “酸鹼度和相對黏度對於神經毒蛋白的開散與回疊路徑的影響” ,國立台灣大學化學所碩士, 2000年
21. Anfinsen, C. B., “Principles that govern the folding of protein chains”, Science, 181, 223-230(1973)
22. Oxender, D. L., C. F. Fox, Protein engineering, Ch 11(1987)
23. Santoro, J., C. Gonzalez, M. Bruix, J. L. Neira, J. L. Nieto, J. Herranz & M. Rico, “High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy”, Journal of Molecular Biology, 229, 722-734(1993)
24. Richards, F. M., H.W. Wyckoff, in: The Enzymes, p.647-, Academic Press, New York(1971)
25. Pan, X. M., X. R. Sheng, S. M. Yang & J. M. Zhou, “Probing subtle acid-induced conformational changes of ribonuclease A by electrospray mass spectrometry”, Federation of European Biochemical Societies, 402, 25-27(1997)
26. Boyer, M., M.-O. Roy & M. Jullien, “ Dynamic light scattering study of percrystallizing ribonuclease solutions”, Journal of Crystal Growth, 167, 212-220(1996)
27. Noppert, A., K. Gast & M. Muller-Frohne, “Reduced-denatured ribonuclease A is not in compact state”, Federation of European Biochemical Societies, 380, 179-182(1996)
28. Katoh, S., Y. Sezai, T. Yamaguchi, Y. Katoh, H. Yagi, D. Nohara, "Refolding of enzymes in a fed-batch operation", Process Biochemistry, 35, 297-300(1999)
29. Gasr, K., D. Zirwer & H. Damaschun, “Ribonuclease T1 has different dimensions in the thermally and chemically denatured states: a dynamic light scattering study”, Federation of European Biochemical Societies, 403, 245-248(1997)
30. 趙承琛, ”界面科學基礎”, 第八章, 復文書局(民國74年)
31. Pileni, M. P., Structure and reactivity in reverse micelles, Elsever Science Publishers B. V.(1989)
32. Pileni, M. P., ” Water-in-Oil colloidal droplets used as microreactors “, Advance in Colloid and Interface Science, 46, 139-163(1993)
33. Schomacker, R. & G. A. Braun, “Ultrafiltration of reverse micelles in the ternary system AOT/Isooctane/Water”, Langmuir , 12, 2362-2366(1996)
34. Pileni, M. P. “Reverse micelles as microreactors”, Journal of Physical Chemistry, 97, 6961-6973(1993)
35. Luisi, P. L. & J. Magid, Critical Reviews in Biomedical Engineering, 20, 409-474(1986)
36. Koper, G. J. M., W. F. C. Sager, J. Smeets & D. Bedeaux, “Aggregation in oil-continuous water/sodium bis(2-ethylhexyl)sulfosuccinate /oil microemulsions”, Journal of Physical Chemistry, 99, 13291-13300(1995)
37. Rahaman, R. S. & T. A. Hatton, “Structural characterization of α-Chymotrypsin-containing AOT reversed micelles “, Journal of Physical Chemistry, 95, 1799-1811(1991)
38. Hashimoto, Y., T. Ono, M. Goto & T. A. Hatton, “Protein refolding by reversed micelles utilizing solid-liquid extraction technique”, Biotechnology and Bioengineering, 57, 620-623(1998)
39. Hayes, D. G. “Mechanism of protein extraction from the solid state by water-in-oil microemulsions”, Biotechnology and Bioengineering, 53, 583-593(1997)
40. Melo, E. P., P. Fojan, J. M. S. Cabral & S. B. Petersen, “Dynamic light scattering of cutinase in AOT reverse micelles”, Chemistry and Physics of Lipids, 106, 181- 189(2000)
41. Kadam, K. L., “ Reverse micelles as a bioseparation tool”, Enzyme and Microbial Technology, 8, 266-273(1986)
42. Nishiki, T., I. Sato, A. Muto & T. Kataoka, “Mass transfer characterization in forward and back extractions of lysozyme by AOT-isooctane reverse micelles across a flat liquid-liquid interface”, Biochemical Engineering Journal, 1, 91-97(1998)
43. Cazabat, A. M., D. Chatenay, P. Guering, D. Langevin, J. Meunier & O. Sorba, “Percolation and critical point in microemulsions “, Surfactant in Solutions, 3, 1737-1744(1982)
44. Bhattacharya, S., J. P. Stokes, M. W. Kim & J. S. Huang, “Percolation an oil-continuous microemulsion “, Physical Review Letters, 55, 1884-1887(1985)
45. DeGennes, P. G. & C. Taupin, “Micro-emulsions and the flexibility of oil-water interfaces”, Journal of Physical Chemistry, 86, 2294-2304(1982)
46. Grest, G. S., I. Webman, S. A. Safran & A. L. R. Bng, “Dynamic percolation in microemulsions “, Physical Review A, 33, 2842-2845(1986)
47. Jada, A., J. Lang & R. Zana, ”Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions “, Journal of Physical Chemistry, 93, 10-12(1989)
48. Eicke, H. F., R. Hilfiker & H. Thomas, “Connectivity controlled charge transport in water-in-oil microemulsions”, Chemical Physics Letters, 125, 295-298(1986)
49. Maitra, A., C. Mathew & M. Varshney, “Closed and open structure aggregates in microemulsions and mechanism of percolative Conduction”, Journal of Physical Chemistry, 94, 5290-5292(1990)
50. Alexandridis, P., J. F. Holzwarth & T. A. Hatton, “Thermodynamics of droplet clustering in percolating AOT water-in-oil microemulsions “, Journal of Physical Chemistry, 99, 8222-8232 (1995)
51. Eastoe, J., T. F. Towey, B. H. Robinson, J. Williams & R. K. Heenan, “Structures of metal bis(2-ethylhexyl) sulfosuccinate aggregates in cyclohexane “, Journal of Physical Chemistry, 97, 1459-1463(1993)
52. Pileni, M. P., G. Cassin, F. Michel & F. Pitre, “Structural study of AOT reverse micelles containing native or modified proteins: Influence of surfactant-enzyme interaction”, Colloids and Surfaces B: Biointerfaces, 3, 321-332(1995)
53. Michel, F. & M. P. Pileni, “Synthesis of hydrophobic ribonuclease by using reverse micelles. Structure study of AOT reverse micelles containing ribonuclease derivatives”, Langmuir, 10, 390-394(1994)
54. Pitre, F., C. Reguaut & M. P. Pileni, “Structural study of AOT reverse micelles containing native and modified α-Chymotrypsin “, Langmuir, 9, 2855-2860 (1993)
55. Chatenay, D., W. Urbach, C. Nicot, M. Vacher & M. Waks, “Hydrodynamic radii of protein-free and protein containing reverse micelles as studied by fluorescence recovery after fringe photobleaching, perturbations introduced by myelin basic protein uptake “, Journal of Physical Chemistry, 91, 2198-2201(1987)
56. Brochette, P., C. Petit & M. P. Pileni,”Cytochrome C in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles: Structure and reactivity “, Journal of Physical Chemistry, 92, 3505-3511(1988)
57. Huruguen, J. P., M. Authier, J. L. Greffe & M. P. Pileni, “Percolation process induced by solubilizing Cytochrome C in reverse micelles “, Langmuir, 7, 243-249(1991)
58. 郭至聖, “以鹽類、胺基酸、蛋白質探討AOT/水/烷類 W/O微乳液系統中percolation現象的影響機制” ,國立中央大學化學工程所碩士, 1997年
59. Petit, C., P. Brochette & M. P. Pileni, “Hydrated electron in reverse micelles:3. Distribution of probes such as ions and hydrophilic proteins”, American Chemical Society, 90, 6517-6521(1986)
60. Hunter, R. J., Introduction to modern colloidal science, Oxford, university Press Inc., New York(1993)
61. Pecoro, P., Dynamic Light Scattering, Plenum Press Inc., New York(1979)
62. Teale, F. W. & G. Weber, “Ultraviolet fluorescence of the aromatic amino acids”, The Biochemical Journal, 65, 476-482(1957)
63. Wetlaufer, D. B., Advances in Protein Chemistry, 17, 303-390(1962)
64. Kinugasa, T., K. Watanabe & H. Takeuchi, ”Activity and conformation of lysozyme in reversed micellar extration”, Industrial and Engineering Chemistry Research, 31, 1827-1829(1992)
65. Wolf, R. & P. L. Luisi, “Micellar solubilization of enzymes in hydrocarbon solvents- enzyme activity and spectroscopic properites of ribonuclease in n-octane”, Biochemical and Biophysical Research Communications, 89, 209-217(1979)
66. Naoe, K., T. Kai, M. Kawagoe & M. Imai, “Extraction of flexibly structured protein in AOT reverse micelles: The flexible structure of protein is the dominant factor for its incorporation into reverse micelles “, Biochemical Engineering Journal, 3, 79-85(1999)
67. Creighton, T. E., “Intermediates in the refolding of reduced Ribonuclease A”, Journal of Molecular Biology, 129, 411-431(1979)
68. Shastry, M. C. R. & M. R. Eftink*, “ Reversible thermal unfolding of ribonuclease T1 in reverse micelles”, Biochemistry, 35, 4094-4101(1996)
69. Lakowicz, J. R., B. Kierdaszuk, P. Callis, H. Malak & I. Gryczynski, “Fluorescence anisotropy of tyrosine using one-and two-photon excitation”, Biophysical Chemistry, 56, 263-271(1995)
70. Crook, E. M., A. P. Mathias & B. R. Rabin, “Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2’: 3’-phosphate”, Biochemistry, 74, 234-238(1960)
71. Chiang, C.-L., “Activity and stability of lipase in Aerosol-OT/ isooctane reverse micelles”, Biotechnology Techniques, 13, 453-457(1999)
72. A. Sanchez-Ferrer & F. Garcia-Carmona, ”Biocatalysis in reverse self-assembling structures: Reverse micelles and reverse vesicles”, Enzyme and Microbial Technology, 16, 409-415(1994)
73. Roux, P., M. Delepierre, M. E. Goldberg & A. F. Chaffotte, “Kinetics of secondary structure recovery during the refolding of reduced hen egg white lysozyme”, The Journal of Biological Chemistry, 272, 24843-24849(1997)
74. Rozema, D. & S. H. Gellman, ”Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation, Biochemistry, 35, 15760-15771(1996)
75. Karpe, P. & E. Ruckenstein, “The enzymatic superactivity in reverse micelles: Role of the dielectric constant”, Journal of Colloid and Interface Science, 141, 534-552(1991)
76. Juminaga, D., W. J. Wedemeyer, R. Garduno-Juarez, M. A. McDonald & H. A. Scheraga, ”Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonucleae A: A study of tyrosine-to -phenylalanine mutants”, Biochemistry, 36, 10131-10145(1997)
77. Naoe, K., T. Kai, M. Kawagoe & M. Imai, “Extraction of flexibly structured protein in AOT reverse micelles: the flexible structure of protein is the dominant factor for its incorporation into reverse micelles “, Biochemical Engineering Journal, 3, 79-85(1999)
指導教授 陳文逸(Wen-yih Chen) 審核日期 2001-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明