博碩士論文 88322049 詳細資訊


姓名 吳明賢(Ming-Hsien Wu )  查詢紙本館藏   畢業系所 土木工程研究所
論文名稱 應用遺傳演算法於群樁基礎低價化設計
(Minimun Cost Design of Pile Groups Using the Genetic Algorithms)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上群樁基礎均採用試誤法的程序來設計,雖能符合規範,但其造價的經濟性卻是無法保證。本研究的目的便是最佳化的演算法則來進行群樁基礎的低價化設計,所設計之群樁基礎不僅可滿足規範的要求,亦可符合經濟性的考量。
在設計荷重、地質條件與施工方法已知的條件下,預鑄群樁基礎的設計變數主要包括樁徑、樁數、樁長、基樁間距和樁帽的尺寸,其中預鑄基樁的尺寸和樁帽內的鋼筋,乃由國內廠商已生產之尺寸所建立的資料庫來選取。最佳設計的目標函數則是總造價,包含土方開挖費用、樁帽費用和基樁費用等;而束制條件則包含強度需求、樁頂位移、樁距及樁帽的尺寸等。
由於設計變數為實數與整數之不連續變數,故本研究嘗試利用遺傳演算法來搜尋最佳解。演算法則的效率將透過數個設計例來說明,而影響群樁基礎造價的主要設計參數,亦將透過數值演算結果來探討,以供工程設計之參考。
摘要(英) Conventional design of pile groups is based on the trial-and-error procedures. Although the design results can satisfy strength and displacement requirements that stipulated in code provisions, it is not a minimum cost design. The purpose of this study is to apply the genetic algorithm (GA) for searching the minimum cost design of precast concrete pile groups.
The objective function of the problem includes the costs of soil excavation, cap and piles. The design variables are the pile diameter, pile length, spacing of piles, and dimensions of cap, which are all considered as discrete design variables. The size of precast concrete piles and rebars in the pile cap are all selected from the available sections in the engineering market.
The strengths and displacement constraints for the minimum cost design of precast concrete pile groups are formulated according to the foundation design code provisions. Size constrains, such as the length of piles, the diameter of piles, and spacing of piles are also considered in the formulation.
The application of GA in the minimum cost design of pile groups is shown by a number of design examples. The efficiency of GA and sensitivity analyses of design variables on the cost of pile groups are also discussed.
關鍵字(中) ★ 不連續變數
★  低價化設計
★  群樁基礎
★  遺傳演算法
關鍵字(英) ★ Genetic Algorithm
★  Minimum Cost De
★  Piles Groups
論文目次 中文摘要………………………………………………………………………………i
英文摘要…………………………………………………………………………….ii
目錄…………………………………………………………………………………iii
表目錄…………………………………………………………………………………v
圖目錄……………………………………………………………………………….vi
第一章 緒論…………………………………………………………………………1
1-1 研究動機…………………………………………………...……………..1
1-2 文獻回顧………………………………………………………….…………2
1-3 論文內容………………………………………………………...…………5
第二章 理論推導……………………………………………………………………7
2-1 遺傳演算法論……………………………………………………………….7
2-1-1 遺傳演算法…………………………………………………………….8
2-1-2 遺傳演算法的理論基礎………………………………………………11
2-1-3 運算子運用的注意事項………………………………………………13
2-2 解決束制條件的方法………………………………………………………16
第三章目標函數和束制條件的建立…………………………………………….18
3-1 前言…………………………………………………………………………18
3-2 目標函數的建立……………………………………………………………18
3-2-1 土方開挖費用…………………………………………………………19
3-2-2 樁帽的費用……………………………………………………………20
3-2-3 基樁打設費用…………………………………………………………21
3-3 束制條件的建立……………………………………………………………21
3-3-1 基樁的間距……………………………………………………………22
3-3-2 樁頂位移量……………………………………………………………23
3-3-3 基樁承載力……………………………………………………………25
3-3-4 拉拔力檢核……………………………………………………………26
3-3-5 穿孔剪力檢核…………………………………………………………27
3-3-6 選用基樁強度…………………………………………………………28
3-3-7 土地的限制…………………………………………………………..29
第四章 參數討論………………………………………………………………….30
4-1 前言…………………………………………………….………………….30
4-2 遺傳演算法及計算效率之參數討論………………………………………31
4-2-1 精英選擇法的影響…………………………………………………..31
4-2-2 交配機率及突變機率的影響…………………………………………32
4-2-3 族群數目的影響………………………………………………………32
4-2-4 懲罰函數的影響………………………………………………………33
4-3 群樁基礎之參數研究………………………………………………………34
4-3-1 外力作用在打擊式群樁的效應………………………………………35
4-3-2 鑽掘式群樁與打擊式群樁的比較……………………………………37
4-3-3 土壤參數的影響………………………………………………………38
4-3-4 兩向使用不同間距和使用相同間距之比較…………………………39
4-3-5 基樁邊界長度之比較…………………………………………………40
4-3-6固定樁數的討論……………………………………………………..40
4-3-7經濟性的驗證…………………………………………………………41
第五章 結論與建議…………………………………………………………….….42
5-1 結論………………………………………………………………………...42
5-2 建議………………………………………………………………………...43
參考文獻……………………………………………………………………………..45
附錄一 樁帽鋼筋計算流程………………………………………………………..83
參考文獻 1.Adeli H, Cheng N.T., “Augmented Lagrangian Genetic Algorithm Structural Optimization.” Journal of Areospace Engineering, pp.104-118., ASCE 1994.
2.Adeli, H., and Cheng, N. T., “Integrated genetic algorithm for optimization of space structures.” Journal of Areospace Engineering, pp.315-328, ASCE 1993.
3.Balling R.J.,and May S.A., ”Large Scale Discrete Structural Optimization:Simulated Annealing, Branch and Bound and other Techniques.” Proc., 3rd Air Force/NASA Symp. On Recent Adv. In Mutlidiscipliary Anal. And Optimization,San Francisco, Calif, 1990.
4.Coello C.A., Christiansen A.D., “Multi-objective Optimization of Trusses Using Genetic Algorithms.” Computers and Structures 75, pp.647-660, 2000
5.Chang, Y.L., Discussion on “Lateral Pile-Loading Tests” by L.B. Feagin,Trans,Vol.102,pp.272~278, .,ASCE 1937.
6.Fleury C. and Braibant V., ”Structural Optimization-A New Dual Method Using Mixed Variables.” Int.J. for Numerical Method in Engrg.,23(2),pp.409-428,1986.
7.Focht. J. A., J., and Koch, K. J.,“Rotational Analysis of the Performance of Offshore Pile Groups,”Proc. Fifth Annual Offshore TechnologtConf, Vol.2, Houston, Texas, pp. 701~708, 1973.
8.Garfinkel, R.and Nemhauser, G, Integer programming. JohnWiley and Sons. New York,N. Y. Glover, F., and Sommer, D., “Pitfalls of Rounding in Discrete Management Decision Variables.” Decision Sci., 22(4), pp.128-141,1975.
9.Geddes, J. D.,“Stress in Foundation soil due to Vertical Subsurface Load”, Geotechnique, Vol.16, pp.231~255,1966.
10.Goldberg D.E., “Genetic Algorithms in Search, Optimization, and Machine Learning.” Reading, MA: Addisson-Wesley, 1989.
11.Gupta O. K., and Ravindran A., ”Nonlinear Mixed Integer Programming and Discrete Optimization.” Progress in Engineering Optimization. R. W. Mayne. And K. M. Ragsdell. Eds. New York, pp.297-520,1984
12.Hayalioglu M.S., ”Optimum Design of Geometrically Non-linear Elastic-Plastic Steel Frames Via Genetic Algorithm”, Computer and Structure, pp.527-538,2000.
13.Hojjat Adeli, Member, ASCE, and Sanjay Kumar., “Distributed Genetic Algorithm for Structural Optimization. “ Journal of Areospace Engineering, pp.156-163, ASCE 1995 (7)14.Holland J.H., “Adaptation in Natural and Artificial System”, Ann Arbor: The University of Michigan Press, 1975.
15.Makinen R.A. E., Periaux J., Toivanen J., “Multidisciplinary Shape Optimization in Aerodynamics and Electromagnetics Using Genetic Algorithms”, International Journal for Numerical Methods in Fluids, vol.30, 99.pp.149-159,1999.
16.Meyerhof, G. G.,“Bearing Capacity and Settlement of Pile Foundation,”Journal of Geotechnical Eng. Div., ASCE, Vol.102, NO.GT3, pp.195~227, 1976.
17.O’Neill,M.W.,Ghazzly,O.I.,AND HA, H.B., “Analysis of Three-Dimensional Pile Group of with Nonlinear Response and pile-Soil-Pile Interaction”,Proc.,Ninth offshore Technology Conference, Vol1. II, pp.245~256, 1977.
18.Olsen, G., and Vanderplaats, G. N., “ A Method for Nonlinear Optimization with Discrete Variables.” AIAA J., 27(11), pp.1584-1589,1989.
19.Poulos, H. G.,“Behavior of Laterally Loaded Pile :II -Pile Groups,”J. of Soil Mech. And Founds. Div., , Vol. 97, No.SM5, pp.733~751, ASCE 1971.
20.Rajeev S, Krishnamoorthy CS. “Discrete Optimization of Structures Using Genetic Algorithms.” Journal of Structural Engineering,pp.118:1233-50, ASCE 1992.
21.Reese, L. C., COX, W. R., AND KOOP, F. D., “Analysis of Laternally Loaded Piles in Sand”, Paper No. OTC 2080, Proceedings, Fifth Annual Offshore Technology Conference, Houston Texas, 1974.
22.S. Valliappan, V. Tandjiria and N.Khalili, “Design Of Raft-Pile Foundation Using Combined Optimization And Finite Element Approach”, Interational Journal For Numerical And Analytical Methods In Geomechanics Int. J Nemer. Anal. Meth. Geomech.,23 ,pp.1043-1065,1999.
23.Sharatchandra M.C.,Sen Mihir, Gad-el-Hak M., ”New Approach to Constrained Shape Optimization Using Genetic Algorithms”, AIAA Journal vol. 36,NO. 1,January 1998.
24.Shin, D. K., Gurdal Z., and Griffin, O.H., “ A Penalty Approach for Nonlinear Optimization with Discrete Design Variables.” Engrg. Optimization,6(1), 29-42.
25.Skempton, A. W., “Cast In—situ Bored Piles in London clay”, Geotechnique, Vol.9, no.4, pp.153~173, 1959.
26.Tomlinson, M. J., “Pile Design and Construction Practice”, Rainbow-Bridge Book Co., Ltd., 1977.
27.Vanderplaats, G.N., “Numerical optimization techniques for engineering design”, Tomlinson, M. J., “Pile Design and Construction Practice”, Rainbow-Bridge Book Co., Ltd., 1977.
28.Vesic, A.S., “Experiments with Instrumented Pile Groups in Sand ”, American Society for Testing and Materials;Special Technical Publication, No.444, pp.177~222, 1969.
29.Vesic, A.S., “Design of Pile Foundation,”Transportation Research Board, National Cooperative Highway Research Program, Washington D.C., Synthesis of Highway Practice No.42., 1977.
30.Y.K. Chow and V. Thevendran., “Optimization Of Pile Groups”, Comput. Geotech.,4,pp.43-58,1987.
31.王訊濤、周南山,「承受側向力之基樁與土壤之互制」,地工技術雜誌,第24期,第34~48頁,民國77年。
32.陳正興,「內政部建築研究所基礎構造設計規範(含解說)」,內政部建築研究所研究報告,第五章,民國87年6月。
33.歐晉德,「基樁負摩擦力」,地工技術雜誌,第18期,第24~33頁,民國76年。
34.「營建物價」,營建研究院,民國88年6月。
35. 日本土質工學會,「樁基礎的設計調查與施工」,昭和58年。
36.日本道路協會,「道路橋示方書‧同解說」,1996。
37.「混凝土工程設計規範與解說-土木401-86」,中國土木水利工程學會。
38.桃15線富國路4K+903處(高速公路51K+500)新建12公尺寬跨越橋工程的橋樑耐震分析與檢核)
39.應用DLM於群樁基礎低價化設計,2001
指導教授 莊德興(Der-Shin Juang) 審核日期 2001-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡