博碩士論文 88323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.173.234.140
姓名 李細貞(Xi-Zhin Li )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 有限元素法與邊界積分式於流固互制問題的應用
相關論文
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 腰椎人工椎間盤之運動軌跡分析★ 骨釘骨板鎖固機構之冷焊現象
★ 人工牙根與骨骼介面之生物力學研究★ 熱交換器之熱換管及端板擴管殘留應力分析
★ 耦合有限元素法與邊界積分式於三維彈性力學的應用★ 邊界積分式於剛體聲場散射問題的應用
★ 新型輪椅座墊之設計與有限元分析★ 耦合有限元素法與邊界積分式於隔音牆效能之分析
★ 人體耳道之有限元素與邊界元素分析★ 奇異項重建法在二維聲場邊界元素分析之應用
★ 波源疊加法在二維聲場之分析★ 三維心電圖與病症自動判別系統之研究
★ 無網格數值分析法應用於股骨頭之生物力學★ 不同離子撞擊冰體及其混合體之光譜分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文應用耦合有限元素法與邊界積分式探討結構體與流體互制作用在三維聲場的分析,單獨使用有限元素法對無限域聲場作離散,需要輸入龐大的資料,而且大型矩陣的計算相當費時。故一般分析外部聲場的結構體與流體互制作用所採用的方法以邊界元素法居多,但是邊界積分方程場點的選擇與源點重合,會產生奇異性積分問題增加計算的困難度。本文耦合有限元素法與邊界積分式避免了上述的問題,結構體與部份流體以有限元素分割,結構體與流體接觸的界面及流體外部的邊界以邊界元素分割,最後將耦合有限元素法與邊界積分式應用在三維聲場的放射和散射問題中,與解析解相比十分一致,證明此數值方法的可靠性。
摘要(英) This study presents the application of the coupled Finite Element Method (FEM) and Boundary Integral Equation (BIE) to determine the three dimensional fluid-structure interaction problems.
It is very complex to discrete the infinite space and needs a large of data and time to compute exterior acoustic field by Finite Element Method.
In general,
analysis of the fluid-structure interaction in the exterior acoustic potential field uses the Boundary Element Method (BEM).
It creates difficulty of compute that the singularity exists when the source point and the field point are the same point by using Boundary Integral Equation.
This paper adopts the coupled Finite Element Method and Boundary Integral Equation to avoid above difficulties.
Twenty-noded isoparametric quadrilateral element is used to discrete the finite region,
and the boundary using eight-noded isoparametric element.
Finally,
applying the coupled Finite Element Method and Boundary Integral Equation in three dimension be acoustic radiation and scattering problems,
the results we got are shown to be very accurate compared with the analytical solutions.
It proves the reliability of the numerical method.
關鍵字(中) ★ 放射
★  散射
★  數值方法
★  有限元素法
★  流體
★  結構體
★  聲壓
★  邊界積分式
關鍵字(英) ★ Boundary integral equation
★  Finite element method
論文目次 中文摘要.........................................I
英文摘要.........................................II
目錄.............................................III
圖表目錄.........................................V
符號說明.........................................VI
第一章緒論....................................1
1.1研究動機......................................1
1.2文獻回顧......................................3
1.3本文架構......................................5
第二章三維聲場之公式推導......................6
2.1有限元素公式推導..............................6
2.2邊界積分方程公式推導..........................10
第三章 三維聲場數值分析........................15
3.1二十節點的六面體元素..........................15
3.2八個節點的四邊形元素..........................21
第四章三維結構體之有限元素分析................25
第五章結構體與流體互制作用方程式之耦合........32
第六章實例測試與討論..........................38
6.1球形體放射.....................................38
6.2剛體圓球散射..................................41
6.3彈性厚球殼散射................................44
第七章結論....................................47
參考文獻.........................................48
參考文獻
參考文獻 1.Assaad, J., Decarpigny, J.N., Bruneel, C., Bossut, R., and Hamonic, B. (1993) “Application of the Finite Element Method to Two-Dimensional Radiation Problem,” The Journal of the Acoustical Society of America, Vol.94, No.1, pp.562-573.
2.Burke, J.E. (1965) “Low-Frequency Scattering by Soft Spheroids,” The Journal of the Acoustical Society of America,Vol.39, No.5, pp.826-831.
3.Burton, A.J. and Miller, G.F. (1971) “The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems,” Proc. of the Royal Society,Loindon A, Vol.323, pp.201-210.
4.Chertock, G. (1964) “Sound Radiation from Vibrating Surfaces,” The Journal of the Acoustical Society of America, Vol.36, No.7, pp.1305-1313.
5.Ciskowski, R.D. and Brebbia C.A. (1991) Boundary Element Methods in Acoustics,Elsevier Applied Science, London.
6.Cook, R.D. (1989) Concepts and Applications of Finite Element Analysis, Third Edition, John Wiley & Sons Inc., New York.
7.Copley, L.G. (1967) “Integral Equation Method for Radiation from Vibrating Bodies,” The Journal of the Acoustical Society of America, Vol.41, No.4, pp.807-816.
8.Doolittle, R.D. and Uberall, H. (1965) “Sound Scattering by Elastic Cylindrical Shells,” The Journal of the Acoustical Society of America,Vol.39, No.2, pp.272-275.
9. Doolittle, R.D. and Uberall, H. (1968) “Sound Scattering by Elastic Cylinders,” The Journal of the Acoustical Society of America,Vol.43, No.1, pp.1-14.
10.Dubus, B. (1994) “Coupling Finite Element and Boundary Element Methods on a Mixed Solid-Fluid/Fluid-Fluid Boundary for Radiation or Scattering Problems,” The Journal of the Acoustical Society of America,Vol.96, No.6, pp.3792-3799.
11.Everstine, G.C. and Henderson, F.M. (1990) “Coupled Finite Element/Boundary Element Approach for Fluid-Structure Interaction,” The Journal of the Acoustical Society of America,Vol.87, No.5, pp.1938-1947.
12.Fahy, F. (1985) Sound and Structural Vibration : Radiation, Transmission and Response, Academic Press, London, Britain.
13.Finlayson, B.A. (1972) The Method of Weighted Residuals and Variational Principles, Academic Press, New York.
14.Goodman, R.R. and Stern, R. (1962) “Reflection and Transmission of Sound by Elastic Spherical Shell,” The Journal of the Acoustical Society of America, Vol.34, No.3, pp.338-344.
15.Hunt, J.T., Knittel, M.R., and Barach, D. (1974) “Finite Element Approach to Acoustic Radiation from Elastic Structures,” The Journal of the Acoustical Society of America, Vol.55, No.2, pp.269-280.
16.Hickling, R. and Wang, N.M. (1965) “Scattering of Sound by a Rigid Movable Sphere,” The Journal of the Acoustical Society of America, Vol.39, No.2, pp.276-279.
17. Hunt, J.T., Knittel, M.R., Nichols, C.S., and Barach, D. (1975) “Finite Element Approach to Acoustic Scattering from Elastic Structures,” The Journal of the Acoustical Society of America, Vol.57, No.2, pp.287-299.
18.Jeans, R.A. and Mathews, I.C. (1990) “Solution of Fluid-Structure Interaction Problems using a Coupled Finite Element and Variational Boundary Element Technique,” The Journal of the Acoustical Society of America,Vol.88,No.5, pp.2459-2466.
19.Joppa, P.D. and Fyfe, I.M. (1978) “A Finite Element Analysis of the Impedance Properties of Irregular Shaped Cavities with Absorptive Boundaries,” Journal of Sound and Vibration, Vol.56, No.1, pp.61-69.
20.Mathews, I.C. (1986) “Numerical Techniques for Three-Dimensional Steady-State Fluid-Structure Interaction,” The Journal of the Acoustical Society of America,Vol.79, No.5, pp.1317-1325.
21.Nefske, D.J. Wolf, J.A., Jr., and Howell, L.J. (1982) “Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment:A Review of Current Practice,” Journal of Sound and Vibration, Vol.80, No.2, pp.247-266.
22.Pates, C.S., Shirahatti, U.S., and Mei, C. (1995) “Sound-Structure Interaction Analysis of Composite Panels using Coupled Boundary and Finite Element Methods,” The Journal of the Acoustical Society of America,Vol.98, No.2, pp.1216-1221.
23.Petye, M., Lea, J., and Koopmann, G.H. (1976) “A Finite Element Method for Determining the Acoustic Modes of Irregular Shaped Cavities,” Journal of Sound and Vibration, Vol. 45, No.4, pp. 495-502.
24.Schenck, H.A. (1968) “Improved Integral Formulation for Acoustic Radiation Problems,” The Journal of the Acoustical Society of America,Vol.44, No.1, pp. 41-58.
25.Shuku, T. and Ishihara, K. (1973) “The Analysis of the Acoustic Field in Irregularly Shaped Rooms by the Finite Element Method,” Journal of Sound and Vibration, Vol. 29, No.1, pp.67-76.
26.Silbiger, A. (1963) “Scattering of Sound by an Elastic Prolate Spheriod,” The Journal of the Acoustical Society of America,Vol.35, No.4, pp.564-570.
27.Seybert, A.F., Soenarko, B., Rizzo, F.J., and Shippy, D.J. (1985) “An Advanced Computational Method for Radiation and Scattering of Acoustic Waves in Three Dimensions,” The Journal of the Acoustical Society of America,Vol.77, No.2, pp.362-368.
28.Seybert, A.F., Soenarko, B., Rizzo, F.J., and Shippy, D.J. (1986) “A Special Integral Equation Formulation for Acoustic Radiation and Scattering for Axisymmetric Bodies and Boundary Conditions,” The Journal of the Acoustical Society of America,Vol.80, pp.1241-1247.
29.Seybert, A.F., Wu, T.W., and Wu, X.F. (1988) “Radiation and Scattering of Acoustic Waves from Elastic Solids and Shells using the Boundary Element Method,” The Journal of the Acoustical Society of America,Vol.84, No.5, pp.1906-1912.
30.Tobocman, W. (1984a) “Calculation of Acoustic Wave Scattering by means of the Helmholtz Integral Equation. ,” The Journal of the Acoustical Society of America,Vol.76, No.2, pp.599-607.
31.Tobocman, W. (1984b) “Calculation of Acoustic Wave Scattering by means of the Helmholtz Integral Equation. ,” The Journal of the Acoustical Society of America,Vol.76, No.5, pp.1549-1554.
32.Williams, W., Parke, N.G.,Moran, D.A. , and Sherman, C.H. (1964) “Acoustic Radiation from a Finite Cylinder,” The Journal of the Acoustical Society of America,Vol.36, No.12, pp.2316-2322.
33.Wu, T.W., Li, W.L., and Seybert, A.F. (1993) “An Efficient Boundary Element Algorithm for Multi-Frequency Acoustical Analysis,” The Journal of the Acoustical Society of America,Vol.94, No.1, pp.447-452.
指導教授 鄔蜀威(Shu-Wei Wu) 審核日期 2001-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明