博碩士論文 88323032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.151.141
姓名 高正華(Z-H Gao )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 Pb、Cu元素對熱壓燒結Al-Si合金磨耗腐蝕行為之影響
(Effect of Alloying Elements on the Wear-Corrosion Behavior of Al-Si Alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以熱壓燒結製程製作含不同Pb(0-10 wt %)、Cu (3 wt%)之Al-Si (20 wt%)複合材料,並施以熱處理後,利用微結構分析、硬度與緻密度量測、磨耗、腐蝕、與磨耗腐蝕試驗,來評估Pb、Cu元素對Al-20Si合金在3.5wt%氯化鈉(NaCl)水溶液中(pH=6.7)磨耗腐蝕行為之影響。
結果顯示經熱壓製成之Al-Si-Pb-Cu複合材料,其緻密度約為理論密度的99%。添加Cu於Al-Si與Al-Si-Pb合金中可提升其硬度,其中Al-Si-Pb-Cu合金之硬度提升比例隨Pb含量增加而上升。於乾磨耗試驗中,合金磨耗量隨著Pb含量的增加而降低,而添加Cu於Al-Si合金中可強化基地,進一步提升其抗磨耗性質。而於腐蝕實驗中,添加Pb、Cu元素均會使合金之腐蝕電流上升,然而,當合金經熱處理後,除了Al-Si合金腐蝕電流升高外,其餘合金之腐蝕電流皆下降,並且腐蝕電位也顯得較為鈍性。此外,添加Pb則可促進合金的鈍化。
Al-Si-Pb合金之熱處理溫度顯著影響其腐蝕性質,當熱處理溫度(300℃)低於Pb熔點時,會使Pb的析出相粗大,導致腐蝕電流急劇升高,而當熱處理溫度(370℃)高於Pb熔點時,則Pb的析出相明顯細化並增加其抗蝕性。Al-Si合金具有優良之磨耗腐蝕性質,磨耗量隨外加電位往陽極增加而降低,而添加Pb和Cu皆可提升Al-Si合金之耐磨耗腐蝕性質,並且含Pb合金,由於具有良好的鈍化行為,當外加電位達鈍化區時,腐蝕電流與磨耗量皆明顯下降。
摘要(英) The synergistic wear-corrosion behavior of Al-20Si-XPb-YCu (X=0-10 wt %,Y=0-3 wt %) alloys fabricated by a hot pressing technique and further heat-treated was evaluated on a block-on-ring tribotest in 3.5 wt% sodium chloride (NaCl) aqueous solution. (pH 6.8) The studies involved the effects of applied potential and environments (dry air and 3.5% NaCl solution ) on the wear rate of alloys. Corrosion behavior was determined by potentiodynamic polarization tests. The results showed that the addition of both lead and copper improved the wear resistance but had a higher corrosion rate. However, heat treatment had a beneficial effect on the corrosion resistance of all alloys, and the lead content improved their passivity. In addition, the heat treatment temperature of Al-Si-Pb alloys had a significant effect on its corrosion resistance. When treating temperature (300?C) was below lead melting point, the lead phase precipitated larger, and corrosion rate increased sharply. On the contrary, as treating temperature (370?C) was above lead melting point, had the beneficial effect on both lead precipitate and corrosion resistance. Al-Si alloy had excellent wear corrosion resistance, the wear loss decreased with increasing applied potential anodically. Furthermore, the addition of both lead and copper improved wear corrosion resistance. Also, the passivity in containing lead Al-Si alloys improved significantly, which was responsible for both wear rate and corrosion current decreasing obviously in the passive potential region during the wear-corrosion test.
關鍵字(中) ★ 磨耗腐蝕
★  鉛
★  鋁
關鍵字(英) ★ Al
★  corrosion
★  Pb
★  wear
論文目次 總目錄
謝誌……………………………………………………………………..Ⅰ
摘要…………………………………………………………………..…Ⅱ
總目錄………………………………………………………………..…Ⅲ
圖目錄………………………………………………………………..…Ⅵ
表目錄………………………………………………………………..…Ⅸ
一、前言……………………………………………………………..…1
二、文獻回顧………………………………………………………..…3
2.1 金屬基複合材料之特性與發展……………………………..…3
2.2 金屬基複合材料之磨耗性質……………………………..……3
2.2.1 組成分類……………………………………………..…..3
2.2.2 影響磨耗特性之參數……………………………………4
2.2.3 磨耗機構…………………………………………………6
2.3金屬基複合材料之腐蝕性質………………………………..….8
2.3.1 伽凡尼腐蝕……………………………………………..10
2.3.2 間隙腐蝕……..…….…………………………………...10
2.4 電化學量測……………………………………………………11
2.4.1 極化原理…………………………………………..……11
2.4.2 混合電位原理……………………………………..……14
2.4.3 腐蝕速率之量測………….. ………………………...…15
2.5 磨耗腐蝕…………………………………………………....…15
三、實驗方法與步驟……………………………………………...….28
3.1 粉末性質與混合………………………………………………28
3.2 熱壓燒結………………………………………………………28
3.3 熱處理程序……………………………………………………29
3.4 緻密度與硬度量測……………………………………………30
3.4.1 緻密度量測………………………………………..……30
3.4.2 硬度試驗………………………………………..………30
3.5 微結構觀察……………………………………………………31
3.6 磨耗試驗………………………………………………………31
3.7 腐蝕試驗………………………………………………………31
3.8 磨耗腐蝕試驗…………………………………………………32
四、結果與討論………………………………………………………45
4.1 微結構及硬度分析……………………………………………45
4.1.1 AS與ASC合金……………..……….…………………45
4.1.2 AS-Pb合金………………….………..…………………47
4.1.3 ASC-Pb合金……………………………………………47
4.2 緻密度…………………………………………………………49
4.3 磨耗試驗…………………………………………..…………..49
4.4 腐蝕試驗………………………………………...…………….51
4.4.1 開路電位量測………………………………..…………51
4.4.2 Pb、Cu對腐蝕性質之影響…………………...………..51
4.4.3 熱處理之影響………………………………..…………52
4.5 磨耗腐蝕試驗…………………………………………...…….53
五、結論………………………………………………………………88
六、參考文獻…………………………………………………………89
圖目錄
圖2-1Schematic representation of asperity interaction…………….…19
圖2-2Physical interactions between abrasive particles and surfaces of materials………………………………………………………..19
圖2-3Mechanisms involved in tribochemical wear…………………..20
圖2-4Crack formation and propagation in surface fatique…………...20
圖2-5Weight loss of alloy 3004-H14 exposed 1 week in distilled water
and in solutions of various PH values……………………..…..21
圖2-6Anodic polarization curve for aluminum alloy 1100…………..22
圖2-7 Effect of chloride-ion activity on pitting potential of aluminum
1199 in NaCl solution…………………………………………22
圖2-8Crevice corrosion………………………………………………23
圖2-9氫離子在電極上還原作用造成濃度極化現象...…………….24
圖2-10 總極化過電壓與電流之關係圖………..……………………25
圖2-11 鋅在鹽酸中的電極動力示意圖……………………..………25
圖2-12 電化學反應測試示意圖…………..…………………………26
圖2-13 Electrochemical corrosive wear testing apparatus…..……….27
圖3-1實驗流程圖……………………………………………………34
圖3-2粉末粒徑分佈圖……………………………………………....35
圖3-3粉末X-Ray分析….…………….……………………………..37
圖3-4Al-Si二元合金相圖…………….……………………………..39
圖3-5Al-Cu二元合金相圖………………………………………….40
圖3-6熱壓設備示意圖………………………………………………41
圖3-7Block on ring 示意圖………………………………………....42
圖3-8腐蝕試驗示意圖………………………………………………43
圖3-9磨耗腐蝕試驗示意圖…………………………………………44
圖4-1Al-20Si合金熱壓後OM金相圖..….…………………………59
圖4-2Al-20Si-3Cu合金熱壓後,Al基地內散佈之Cu顆粒OM金相圖與linescan分析……………………..………………..…….60
圖4-3Al-20Si-3Cu合金經固溶處理後,Al基地內散佈之Cu顆粒OM金相圖…………………………………………………….61
圖4-4較細小之CuAl2介金屬顆粒固溶分解金相Mapping分析.…62
圖4-5ASC與ASC-Pb合金之180℃時效硬化曲線………………...63
圖4-6Al-20Si-3Cu合金固溶淬火後,Al基地內之析出相..…..…..64
圖4-7ASC合金固溶淬火後,CuAl2介金屬相與Si顆粒接觸位置相互擴散生成之三元介金屬相…………………………....…….65
圖4-8Al-Si-Cu介金屬相Mapping分析………….……………66
圖4-9Al-Pb二元合金相圖………...…………………………….…..67
圖4-10 AS-10Pb合金熱壓後Pb相之分布……………………...….68
圖4-11 ASC-10Pb合金經固溶處理後,CuAl2介金屬相之形態….69
圖4-12 CuAl2介金屬相與Pb之擴散分析.….………………….…..70
圖4-13 Al-20Si合金熱壓後,Si顆粒破裂之OM金相圖……...……71
圖4-14 荷重11.8N、磨耗速率0.24m/s(200rpm)條件下,各合金成份乾磨耗體積損失與磨耗距離之關係圖………………..……72
圖4-15 磨耗600公尺之SEM金相圖…………….…………………73
圖4-16 磨耗600公尺體積損失與合金硬度之關係圖……………...75
圖4-17 各合金成份於3.5wt%NaCl(pH=6.7)水溶液中之Tafel極化曲……………………………………………………………..76
圖4-18 於3.5wt%NaCl(pH=6.7)水溶液中,不同熱處理溫度之AS-Pb合金Tafel極化曲線………………………….………………78
圖4-19 AS-Pb合金經不同熱處理溫度後之Pb相析出分佈………79
圖4-20 Pb相析出細小增加Al、Pb接觸面積示意圖...……………..80
圖4-21 於3.5wt%NaCl(pH=6.7)水溶液中,施加不同電位下之磨耗腐蝕性質……………………………………………………..81
圖4-22 施加OCP+300mV電位下之磨耗腐蝕SEM金相圖………83
圖4-23 磨耗腐蝕生成物SEM金相圖………………………………85
圖4-24 腐蝕生成物Mapping分析…………………………………...86
表目錄
表2-1Standard emf series of metals………….………………………17
表2-2Galvanic Series for seawater…………………………………...18
表3-1合金代號與理論密度…………………………………………33
表4-1合金熱壓、固溶淬火與頂時效之硬度值表……………….…55
表4-2ASC與ASC-Pb合金,淬火後與達頂時效之硬度提升比例…55
表4-3各合金成份熱壓後之緻密度…………….…………………...56
表4-4各合金成份於3.5wt%NaCl(pH=6.7)水溶液中之OCP……....57
表4-5 各合金成份於3.5wt%NaCl(pH=6.7)水溶液中之腐蝕電位與腐
蝕電流…………………………………………………………57
表4-6 AS-Pb合金經不同熱處理後之腐蝕電位與腐蝕電流……….58
參考文獻 1. G. Timmermans, L. Froyen, “Fretting wear behaviour of hypereutectic P/M Al-Si in oil enviroment”, Wear 230 (1999) 105-117.
2. M. J. Smith and R. M. Smith, “Aluminum Engines-design for modern fabrication”, SAE Transactions, 67 (1959) 295-307.
3. K. Mohawwed Jasim, “Nature of subsurface damage of Al-22wt.%Si alloys sliding dry on steel discs at high sliding speeds”, Wear, 98 (1984) 183-197.
4. V. O. Abramov, O. V. Abramov, F. Sommer, D. Orlov, “Properties of Al-Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting”, Materials Letters 23 (1995) 17-20.
5. B. N. Pramila Bai, E. S. Dwarakadasa, S. K. Biswas, “Scanning electron microscopy studies of wear in LM13 and LM13-Graphite particulate composite”, Wear, 76 (1982) 211-220.
6. R. G. Wendt, W. C. Moshier, B. Shaw, P. Miller, D. L. Olson, “Corrosion-Resistance aluminum matrix for graphite-aluminum composites”, Corrosion Vol. 50, No. 11, 1994, pp. 819-826.
7. C. S. Sivaramakrishnan, R. K. Mahanti, R. Kumar, “The dispersion of lead and graphite in aluminum alloys for bearing applications”, Wear, 96 (1984) 121-134.
8. J. P. Pathak, V. Singh, S. N. Tiwari, “Effect of lead content on tensile fracture of Al-4.5Cu-Pb bearing alloy”, Journal of Materials Science Letters 12 (1993) 1450-1452.
9. Ashok Sharma, T. V. Rajan, “Scanning electron microscopic studies of worn-out leaded aluminum-silicon alloy surfaces”, Wear, 174 (1994) 217-228.
10. H. Torabian, J. P. Pathak, S. N. Tiwari, “On wear characteristics of leaded aluminum-silicon alloys”, Wear, 177 (1994) 47-54.
11. M. Zhu, Y. Gao, C. Y. Chung, Z. X. Che, K. C. Luo, B. L. Li, ”Improvement of the wear behaviour of Al-Pb alloys by mechanical alloying”, Wear, 242 (2000) 47-53.
12. D. P. Howe, M. Mee, A. A. Torrance, J. D. Williams, “Al-Pb-Si-In bearing alloy”, Materials Science and Tecnology, Vol. 7, April 1991, pp. 330-333.
13. A. P. Sannino, H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites : review and discussion”, Wear, 189 (1995) 1-19.
14. 陳豐彥, 何信威, “粉末冶金技術手冊 : 燒結摩擦材料”, 中華民國粉末冶金協會, 1994, pp. 445-457.
15. B. K. Prasad, “Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions”, Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 809-815.
16. A. D. Sarkar, J. Clarke, “ Wear characteristics, frictions and surface topography observed in the dry sliding of as-cast and aging- hardening Al-Si alloys”, Wear, 75 (1982) 71-85.
17. Szu Yin Yu, Hitoshi Ishii, Keiichiro Tohgo, Young Tae Cho, Dongfeng Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite”, Wear, 213 (1997) 21-28.
18. S. C. Tjong, K. C. Lau, “Properties and abrasive wear of TiB2 / Al-4%Cu composites produced by hot isostatic pressing”, Composites Science and Technology 59 (1999) 2005-2013.
19. Rong Chen, Akira Iwabuchi, Tomoharu Shimizu, Hyung Seop Shin, Hidenobu Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites”, Wear, 213 (1997) 175-184.
20. Jian Zhang, Degui Zhu, Liu Yang, Shizhuo Li, “Wear behavior of lanxide Al2O3/Al composite”, Wear, 215 (1998) 34-39.
21. Karl-Heinz Zum Gahr, “Microstructure and wear of materials”, Elsevier Science Publishing Company Inc., 1987, pp. 80-106.
22. D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall International, Inc., 1997, pp. 86-92.
23. J. R. Davies, “ASM Specialty HandBook : Aluminum and Aluminum alloys”, William W. Scott, Jr., 1993, pp. 579-580.
24. 鮮祺振, 劉國橋, “金屬腐蝕及其控制”, 徐氏基金會出版社, 1990, pp. 295-304.
25. M. G. Gontana, “Corrosion Engeering 3rd ed.”, McGraw-Hill Inc., 1986, pp. 41-50.
26. D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall International, Inc., 1997, pp. 170.
27. M. G. Gontana, “Corrosion Engeering 3rd ed.”, McGraw-Hill Inc., 1986, pp. 53-55.
28. 柯賢文, “腐蝕及其防制”, 全華出版社, 1998, pp. 55-73.
29. J. M. West, “Electrodeposition and Corrosion Process”, Van Nostrand Reinhold, 1971, pp. 28-36.
30. C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metallurgical and Materials Transactions A, Vol. 30A, 1999, pp. 643-651.
31. C. K. Lee, H. C. Shih, “ Structure and corrosive wear resistance of plama-nitrided alloy steels in 3% sodium chloride solutions”, Corrosion Vol. 50, No. 11, 1994, pp. 848-856.
32. I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 1985, Vol. 103, pp. 253-267.
33. S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study of white cast irons”, Wear, Vol. 181-183, 1995, 469-475.
34. J. F. Modolfo, “Aluminum Alloys : Structure and Properties”, Butter Worth&Co., London&Bostone, 1976, pp. 15.
35. R. M. German, K. F. Hens, J. L. Johnson, “Powder Metallurgy Processing of thermal management materials for microelectronic applications”, The International Journal of Powder Metallurgy, 1994, Vol. 30, No. 2, pp. 205-215.
36. ASTM Designation : G 69-97, pp. 268-271.
37. ASTM Designation : G 1-90, pp. 15-21.
38. D. Y. Ying, D. L. Zhang, “Solid-state reactions Cu and Al during mechanical alloying and heat treatment”, Journal of Alloys and Compounds, Vol. 311, 2000, pp. 275-282.
39. S. Long, O. Beffort, C. Cayron, C. Bonjour, “Microstructure and mechanical properties of a high volume fraction SiC particle reinforced AlCu4MgAg squeeze casting”, Materials Science and Engineering A, Vol. 269, 1999, pp. 175-185.
40. K. I. Moore, D. L. Zhang, B. Cantor, “Solidification of Pb particles embedded in Al”, Acta Metallurgica et Materialia, Vol. 38, No. 7, 1990, pp. 1327-1342.
41. R. Goswami, K. Chattopadhyay, “The superheating and the crystallography of embedded Pb particles in f.c.c. Al, Cu and Ni Matrices”, Acta Metallurgica et Materialia, Vol. 43, No. 7, 1995, pp. 2837-2847.
42. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminum-silicon alloys”, Wear, 197 (1996) 105-114.
43. J. Clarke, A. D. Sarkar, “Topographical features observed in a scanning electron microscopy study of aluminum alloy surface in sliding wear”, Wear, 69 (1981) 1-23.
44. Hang-Moule Kim, Taek-Soo Kim, C. Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al-Pb-Cu alloys”, Materials Science and Engineering A, Vol. 287, 2000, pp. 59-65.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2001-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明