博碩士論文 88323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.94.200.93
姓名 魏大華(Da-Hua Wei )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究
(Effect of Ni and Sn coating on the electrolytic migration of Cu-conductors, and the study of gold-embrittlement induced by reflow of the Sn-3.5Ag BGA solder on the gold-deposited Ni/Cu pads)
相關論文
★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究
★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響
★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作
★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究
★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討★ n-型(100)矽單晶巨孔洞之電化學研究
★ 鋁在酸性溶液中孔蝕行為研究★ 微陽極引導電鍍與監測
★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究
★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構★ 微陽極導引電鍍法製作微銅柱及銅柵欄之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文在探討鎳、錫電鍍層對銅導線遷移性之影響,以及Sn-3.5Ag BGA銲料在鍍金之鎳/銅銲墊上迴銲導致之金脆現象。銅導線表面電鍍2.5?10μm鎳後,分別在蒸餾水、0.01M NaCl及(NH4)2SO4水溶液中,施以5V偏壓,進行遷移研究,結果顯示:表層鍍鎳之銅導線,具有抑制銅遷移之效果,隨鎳鍍層厚度增加(2.5?10μm) 抗遷移性增強,但此鍍鎳銅導線在250°C持溫300秒後,抗遷移性顯著減弱。
銅導線表面電鍍1、2及3μm錫後,雖在蒸餾水及0.01M (NH4)2SO4水溶液中5V偏壓下不能抵抗遷移,但將鍍1μm錫之銅導線在250°C持溫300秒後,立即具有良好抗遷移性,顯然鍍錫銅導線因加熱處理而增強其抗遷移性。
在0.01M (NH4)2SO4水溶液中進行陽極動態極化掃描及定電位陽極反應,配合ESCA表面分析,得知鎳、錫鍍層抑制銅遷移的原因如下:鎳鍍層在銅導線表面因陽極鈍化而生成保護膜,此鈍化膜在鎳表層為NiO及Ni(OH)2;另一方面,經加熱後之錫鍍層生成SnO2,可以抑制底層銅的溶解及氧化。
金脆研究先在鍍鎳(5μm)銅銲墊上電鍍0.1、0.5及1μm金層,再分別與Sn-Pb(63/37)及Sn-3.5Ag銲球進行迴銲,迴銲後即進行剪力量測,結果顯示:Sn-3.5Ag銲料比Sn-Pb銲料有更好的抗剪力強度(因生成Ag3Sn介金屬強化相);金鍍層愈厚,抗剪力強度愈差。
摘要(英) Effect of Ni and Sn coating on the migration of Cu-conductors, and gold-embrittlement induced by reflow of the Sn-3.5Ag BGA solder on the gold deposited Ni/Cu pads have been studied. The migration of the Cu-conductors in distilled water, 0.01M Nacl and (NH4)2SO4 solutions at a bias of 5V was inhibited by coating a layer of Ni in thickness of 2.5?10μm. This inhibition is more efficient with increasing the thickness of the Ni-coats from 2.5 to 10μm. However, it is less efficient when the Ni-coated conductors have been heat-treated at 250℃ for 300s.
The migration inhibition is not so efficient in the case of Sn-coated Cu-conductors at the same conditions. However, heat treatment (at 250℃ for 300s) tremendously enhances the resistance of the Sn-coated conductors to migration, even though the thickness of the Sn-coat only at 1μm.
Electrochemical polarization such as potentiodynamic and potentiostatic experiments were conducted. The XPS analysis for the reaction products formed on the anode indicates that NiO and Ni(OH)2 are responsible for migration inhibition of the Ni-coated conductors, and SnO2 is for the heat-treated Sn-coating conductors.
Gold-embrittlement was estimated by conducting the shear test of the soldered system where Sn-Pb (63/37) and Sn-3.5Ag solders have been reflowed, respectively, onto the Au-deposited Ni/Cu pads. The thickness of Au-deposits is ranging from 0.1 to 1μm and that for Ni-coat is 5μm. It was found that the shear strength is stronger for the Sn-3.5Ag soldering bond than for the Sn-Pb soldering. Intermetallic phase (Ag3Sn) strengthens the soldering bond. The shear strength decreases with an increase of the thickness of gold coats.
關鍵字(中) ★ 金脆
★  錫-銀 球格陣列構裝銲料
★  鍍鎳或錫
★  電解質遷移
關鍵字(英) ★ electrolytic migration
★  Ni and Sn coating
論文目次 摘要(中文)Ⅰ
摘要(英文)Ⅱ
誌謝Ⅲ
目錄Ⅳ
表目錄Ⅹ
圖目錄ⅩⅠ
一、前言 1
1-1研究背景1
1-1-1構裝簡界1
1-1-2 BGA緣起與介紹2
1-1-3銅墊(Cu pads)與鎳鍍層之電化學行為4
1-1-4銲料及迴銲5
1-1-5無鉛銲料之發展6
1-2研究目的8
二、文獻回顧與理論9
2-1金屬的遷移9
2-1-1遷移(migration)9
2-1-2金屬遷移的型態9
2-1-3金屬遷移的環境9
2-1-4金屬遷移的過程與現象11
2-2銅的遷移12
2-3銅的腐蝕14
2-4鎳的氧化15
2-5錫的氧化17
2-6合金的溶解18
2-7銲料間之界面反應19
2-7-1鎳-錫(Ni/Sn)19
2-7-2錫-銀銲料/鎳、銅(Sn-Ag solder/Ni、Cu)20
2-7-3錫銲料/金/鎳、銅(Sn solder/Au/Ni、Cu)21
2-8金的應用與衍生之問題22
2-8-1鍍金之原理22
2-8-2鍍金之應用23
2-8-3金脆性23
三、實驗裝置25
3-1試片製備25
3-1-1感光電路板製備25
3-1-2電路板圖樣25
3-1-3試片製作方法25
3-2電鍍及熱處理26
3-2-1銅線路電鍍鎳及熱處理26
3-2-2銅線路電鍍錫及熱處理28
3-2-3鍍鎳銅線路鍍金29
3-3電解槽環境30
3-3-1電解槽及實驗裝置30
3-3-2電解槽環境30
3-4實驗操作與試片準備31
3-4-1遷移性的比較31
3-4-2動態陽極極化曲線掃描32
3-4-3陽極定電位腐蝕32
3-5儀器分析33
3-5-1遷移電流量測及動態極化量測33
3-5-2 OM及SEM觀察33
3-5-3 AFM表面型態觀察及分析34
3-5-4 X-ray結晶分析34
3-5-5 ESCA表面氧化物成份分析34
3-6 BGA迴銲及金脆評估35
3-6-1試片製備35
3-6-2銲錫球與BGA迴銲之程序35
3-6-3推力測試36
四、結果37
(Ⅰ)銅線路鍍鎳37
4-1-1銅線路鍍鎳熱處理前後表面形態SEM觀察37
4-1-2銅線路鍍不同厚度鎳層後AFM表面粗糙度分析37
4-1-3熱處理對鍍鎳銅線路表面粗糙度之影響38
4-1-4銅線路鍍不同厚度鎳熱處理前後X-ray繞射分析39
4-1-5銅線路鍍鎳熱處理前後之SEI剖面圖及EDX分析40
4-1-6兩極在外加電壓5V時電流密度對時間的關係圖42
4-1-7陰極析出物觀察45
(Ⅱ) 銅線路鍍錫49
4-2-1銅線路鍍錫熱處理前後表面形態SEM觀察49
4-2-2銅線路鍍不同厚度錫熱處理前後X-ray繞射分析49
4-2-3銅線路鍍錫之SEI剖面圖51
4-2-4兩極在外加電壓5V時電流密度對時間的關係圖51
4-2-5陰極析出物觀察53
(Ⅲ) 鍍鎳銅線路鍍金54
4-3-1鍍鎳銅線路在鍍不同厚度金層後表面形態SEM觀察54
4-3-2鍍鎳銅線路在鍍不同厚度金後X-ray繞射分析55
4-3-3鍍鎳銅線路在鍍金後之SEI剖面圖及EDX分析55
(Ⅳ)鍍不同厚度金層之BGA與銲錫球迴銲56
4-4-1錫-鉛(63/37)銲球56
4-4-2 Sn-3.5Ag銲球57
五、討論59
(Ⅰ)銅線路鍍鎳59
5-1-1 NaCl水溶液中的動態陽極極化曲線分析59
5-1-2 (NH4)2SO4水溶液中的動態陽極極化曲線分析59
5-1-3銅線路鍍不同厚度鎳的動態陽極極化曲線分析64
5-1-4在0.01M (NH4)2SO4水溶液中定電位下的陽極電流比較65
5-1-5 ESCA表面氧化物成分分析66
(Ⅱ)銅線路鍍錫70
5-2-1 (NH4)2SO4水溶液中的動態陽極極化曲線分析70
5-2-2銅線路鍍不同厚度錫的動態陽極極化曲線分析74
5-2-3 ESCA表面氧化物成分分析75
(Ⅲ)鍍不同厚度金層之BGA與銲錫球迴銲78
5-3-1錫-鉛(63/37)銲球78
5-3-2 Sn-3.5Ag銲球79
六、結論81
七、參考文獻82
參考文獻 1.「亞太半導體製造中心策略藍圖─矽金之島2010」,中華民國電子材料與元件協會(1996)。
2.陳信文,「電子構裝現況與展望」,材料會訊,(1999)6月,pp3-4。
3.楊文禮、張秀蓉,「新世代IC封裝技術與材料的發展趨勢」, 材料會訊,(1999)6月,5-11。
4.R. R. Tummala, E. J. Rymaszewaki and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman & Hall, New York, NY, (1977).
5.J. E. Morris, Workshop “The Design and Processing Technology of Electronic Packaging”, (1997).
6.許再發、黃仁豪、劉文隆,「BMI系PBGA基板技術簡介」,工業材料151期,88年7月。
7.“Ball Grid Array Technology”, Ed. by J. H. Lau, McGraw-Hill, (1995).
8.陳文彥,「單晶片構裝的明日之星-塑膠BGA」, 工業材料116期,85年8月。
9.J. J. Liu, H. Berg, Y. Wen, S. Mulgaonker, R. Bowlby and A. Mawer, “ Plastic Ball Grid Array (PBGA) Overview ”, Mat. Chem. Phys., Vol. 40, (1995) 236-244.
10.A. Fukuda, “Compaq, Motorola Lead US Drive for BGA Packages”, NIKKEI Electronics Asia, May (1944) 40-47.
11.溫啟宏,「IC封裝專題」,工研院電子所,1996年6月。
12.鄭煇穎、陳亦達,「電化學對噴錫板氧化物與共化物之研究」,電路板會刊第七期,(1999) 14-21。
13.Sunchana P. Pucic, “Diffusion of Copper into Gold Plating”, National Institute of Standards and Technology, (1993) 114-117.
14.P. L. Liu and J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces”, Journal of Electronic Materials, Vol. 29. No. 5, (2000) 622-627.
15.鄭福元、周立飛、虎軒東,「厚薄膜混合集成電路─設計、製造和應用」,科學出版社,(1984) 59-60。
16.S. A. Watson, “Application of Engineering Nickel Plating,” Nickel Development Technical Series, No. 10051, Toronto (1989).
17.J. K. Dennis and T. E. Such, “Nickel and Chromium Plating,” 3rd edition, Publishing by Woodhead Publishing Ltd., England.
18.J. H. Lau, J. Miremadi, J. Gleason, R. Hauen, S. Ottoboni and S. Mimura, “No Clean Mass Reflow of Large Plastic Ball Grid Array Package”, Circuit World, Vol. 20 (1994) 15-22.
19.“Reliability of Plastic Ball Grid Array Assembly”, in: Ball Grid Array Technology, ed. J. H. Lau, Mc Graw-Hill, (1995) 400-410, Ch13.
20.B. Trumble, “Get the Lead Out”, IEEE Spectrum, May (1998) 55-60.
21.詹益淇、莊東漢,「無鉛銲錫的回顧與最新發展」,電子月刊(2000 )。
22.N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, No. 26, July (1997) 65-69.
23.C. E. T. White, “Indium:High-Technology Metal”, Advanced Materials& Processes inc. Metal Progress, (1997) 69-72.
24.S. J. Krumbein, “Metallic Electromigration Phenomena,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, No. 1, March (1988) 5-14.
25.H. C. Ling, and A. M. Jackson, “Correlation of Silver Migration with Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic Capactors,” IEEE Trans. Comp., Hybrids, Manuf. Technol., Vol. 12, No. 1, March, (1989) 130-137.
26.P. Dumoulin, J. P. Seurin, and P. Marce, “Metal Migrations Outside the Package During Accelerated Life Tests,” IEEE, Trans. Comp., Hybrids, Manuf. Technol., Vol., chmt-5, No. 4, DEC., (1982) 470-485.
27.D. E. Riemer, “Meteria Selection and Design Guidelines for Migration-Resistant Thick-Film Circuits with Silver-Bearing Conductors,” IEEE, Trans. Comp. Hybrids, Manuf. Technol. (1981).
28.T. Kawanobe, and K. Otsuka, “Metal Migration in Electronic Components,” IEEE Trans. Comp., Hybirds, Manuf. Technol., (1982) 220-228.
29.A. J. Bard, “Electrochemical Methods: Fundmentals and Applications,” John Wiley & sons. Inc., U. S. A., (1980) 119.
30.Gabor Harsanyi, “Copper May Destroy Chip-Level Reliability:Handle with Care-Mechanism and Conditions for Copper Migrated Resistive Short Formation,”IEEE Electron Device Letters, Vol. 20, No. 1, January, (1999) 5-8.
31.Kenji Okamoto, Takahiko Maeda, and Kohji Haga, “Copper Ion Migration in Insulated Metal Substrates, ”Fuji Electric Corporate Research & Development, Ltd. (1995) 659-663.
32.R. E. Lobnig, R. P. Frankenthal, D. J. Siconolfi and J. D. Sinclair, “The Effect of Submicron Ammonium Sulfate Particles on the Corrosion of Copper, ”AT&T BELL Laboratories. Murray Hill, NJ 07974.
33.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 384-389.
34.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 330-334.
35.V. Rothmund, “Ueber den Einfluss der Anionen auf die Passivierbarkeit der Metalle,” Z. Physics and Chemistry, Vol. 110, (1924) 384-392.
36.M. Pourbaix, “Corrosion du fer par les solutions de soude caustique [Thesis, Brussels, 1945 (exact)],” Bull. Techn. A. I. Br., (1946) 67-86 (1947) 109-120.
37.L. M. Voltchkova, L. G. Antonova and A. J. Krasilschikov, “Comportement Anoidique du Nickel dans les Solutions Alcalines,” J. Fiz. Khim. Vol. 23, (1949) 714-718.
38.林智賢,「鎳、銦表面鍍層對含銀厚膜之抗遷移性研究」,國立中央大學機械工程學系碩士論文,指導教授:林景崎 博士(2000)。

39.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 476-480.
40.M. Datta, “Anodic Dissolution of Metals at High Rates,” IBM J. RES. Develop. Vol. 37, No. 2 (1993).
41.H. W. Pickering, “Characteristic Features of Alloy Polarization Curves,” Corrosion Science, Vol. 23, No. 10, (1983) 1107-1120.
42.P. Nash and A. Nash, “Ni-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 2864.
43.D. Gur and M. Bamberger, Acta Meter. 46, (1998) 4917.
44.J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, Zeitschrift fur Metallkunde, Vol. 73, (1982) 439-444.
45.S. Bader, W. Gust and H. Hieber, Acta Metallurgica et Materialia, Vol. 43(1), (1995) 329-337.
46.劉家明,「錫銀無鉛銲料與BGA封裝內墊層反應之研究」,國立中央大學化學工程學系碩士論文,指導教授:高振宏 博士(2000)。
47.I. Karakaya and W. T. Thompson, “Ag-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1987) 96.
48.M. Singleton and P. Nash, “Ag-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 65.
49.N. Saunders and A. P. Miodownik, “Cu-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1990) 1482.
50.P. L. Liu and J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces”, Journal of Electronic Materials, Vol. 29. No. 5, (2000) 622-627.
51.A. W. Gibson, K. N. Subramanian and T. R. Bieler, “Comparison of Mechanical Fatigue Fracture Behavior of Eutectic Sn-Ag Solder With and Without Cu6Sn5 Intermetallic Particulate Reinforcement”, Journal of Advanced Materials, 19-24.
52.黃隆瑋,「銀厚膜表面蒸鍍銦、錫後之固液擴散接合研究」, 國立中央大學機械工程學系碩士論文,指導教授:林景崎 博士(1999)。

53.Zequn Mei, Matt Kaufmann, Ali Eslambolchi, and Pat Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel/Immersion Gold”, Electronic Components and Technology Conference, (1998) 952-961.
54.莊萬發,「無電解鍍金-化學鍍金技術」,復漢出版社,(1996)74-77。
55.賴耿陽,「實用電鍍技術全集」,復漢出版社,(1998)。
56.Masao Nakazawa, and Shin-ichi Wakabayashi, “Ceramic Packages and Substrates Prepared by Electroless Ni-Au Process”, IEEE/CHMT ’91 IEMT Symposium, (1991) 366-370.
57.楊松堅,「鍍金技術處理」,五洲出版社,(1980)19-28。
58.羅煥然,「鍍金層在焊接上之應用」,表面黏著技術27期,32-38。
59.R. N. Wild, “Effects of Gold on Solder Properties”, Proc. Internepcon,
Brighton, (1968) 27-42.
60.Donald H. Daebler, “An Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, (1991) 43-46.
61.R. S. Schrebler-Gutzman, J. R. Vilche and A. J. Arvia, “The Kinetics and Mechanism of the Nickel Electrode—Ⅲ. The Potentiodynamic Response of Nickel Electrodes in Alkaline Solutions in the Potential Region of Ni(OH)2 Formation”, Corrosion Science, Vol. 18, (1978) 765.
62.汪建民,「材料分析」,中國材料科學學會,(1998) 305-351及353-382。
63.D. J. Chakrabarti, S. W. Chen, and Y. A. Chang, “Cu-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 1444.
64.K. N. Tu, “Cu/Sn interfacial reactions:thin-film case versus bulk case”, Materials Chemistry and Physics, Vol. 46, (1996) 217-223.
65.H. Okamoto and T. B. Massalski, “Au-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1987) 403.
66.Abhijit Palit, and Simo O. Pehkonen, “Copper Corrosion in Distribution Systems: Evaluation of a Homogeneous Cu2O Film and a Natural Corrosion Scale as Corrosion Inhibitors,” Corrosion Science, Vol. 42, (2000) 1801-1822.
67.C. F. Zinola, and A. M. Castro Luna, “The Inhibition of Ni Corrosion in H2SO4 Solutions Containing Simple Non-saturated Substances,” Corrosion Science, Vol. 37, No. 12, (1995) 1919-1929.
68.S. Colin, E. Beche, R. Berjoan, H. Jolibois, and A. Chambaudet, “An XPS and AES Study of the Free Corrosion of Cu-, Ni- and Zn-based Alloys in Synthetic Sweat,” Corrosion Science, 41 (1999) 1051-1065.
69.P. Druska, and H.-H. Strehblow, “Surface Analytical Examination of Passive Layers on Cu-Ni Alloys part Ⅱ. Acidic solutions,” Corrosion Science, Vol. 38, No. 8, (1996) 1369-1383.
70.R. S. Schrebler-Gutzman, J. R. Vilche and A. J. Arvia, “The Kinetics and Mechanism of the Nickel Electrode—Ⅲ. The Potentiodynamic Response of Nickel Electrodes in Alkaline Solutions in the Potential Region of Ni(OH)2 Formation,” Corrosion Science, Vol. 18, (1978) 765.
71.T. Robert, M. Bartel and G. Offergeld, “Characterization of Oxygen Species Adsorbed on Copper and Nickel Oxides by X-ray Photoelectron Spectroscopy”, Surface Science, Vol. 33, (1972) 123-130.
72.Jun Li and David Lampner, “In-situ AFM Study of Pitting Corrosion of Cu Thin Films,” Colloids and Surfaces, Vol. 154, (1999) 227-237.
73.Kosaku Kishi, Yoshinobu Hayakawa, and Katsuya Fujiwara, “Preparation of Ultrathin Nickel Oxide on Ordered Vanadium Oxide Films Grown on Cu(100) Surface Studied by LEED and XPS,” Surface Science, Vol. 356, (1996) 171-180.
74.S. A. M. Refaey, “The Corrosion and Passivation of Tin in Borate Solutions and the Effect of Halide Ions,” Electrochimica Acta, Vol. 41, No. 16, (1996) 2545-2549.
75.M. Seruga, M. Metikos-Hukovic, T. Valla, M. Milun, H. Hoffschultz, and K. Wandelt, “Electrochemical and X-ray Photoelectron Spectroscopy Studied of Passive Film on Tin in Citrate Buffer Solution,” Journal of Electroanalytical Chemistry, Vol. 407, (1996) 83-89.
76.S. Takemura, H. Kato, and Y. Nakajima, “Photoelectron Studies of Electrochemical Diffusion of Conducting Polymer/Transparent Conductive Metal Oxide Film Interfaces,” Applied Surface Science 144-145 (1999) 360-365.
77.K. S. Subramanian, V. S. Sastri, M. Elboujdaini, J. W. Connor, and A. B. C. Davey, “Water Contamination: Impact of Tin-Lead Solder,” Wat. Res. Vol. 29, No.8, (1995) 1827-1836.
78.S. C. Hung, P. J. Zheng, S. C. Lee and J. J. Lee, “The Effect of Au Plating Thickness of BGA Substrates on Ball Shear Strength Under Reliability Tests,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, (1999) 7-15.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2001-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明