博碩士論文 88323042 詳細資訊


姓名 郭光程(Guang-Cheng Kuo )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 7005與AZ61A拉伸、壓縮之機械性質研究
(The mechanical properties of tensile and compression for 7005 aluminium alloy and AZ61A magnesium alloy)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要探討應變速率及溫度對於六方緊密堆積結構之鎂合金AZ61A及面心立方結構的鋁合金7005之拉伸、壓縮機械性質和破斷面形態的影響。在拉伸測試方面,在低應變速率(1.85×10-4/s)及高應變速率(1.85×10-2/s)鎂合金AZ61A和鋁合金7005之抗拉強度、降伏強度均會隨著溫度上升而降低,而伸長率則是隨著溫度上升而增加。本研究發現,由於鋁合金是屬於疊差能較高的材料,當材料在低應變速率及高溫的測試條件下容易發生動態回復的現象,導致高溫時材料軟化。而鎂合金AZ61A在塑性變形過程中會形成本質型的疊差,使得鎂合金AZ61A在低應變速率及高溫的測試條件下,材料會發生動態再結晶的現象,導致材料高溫軟化。在壓縮測試方面,鎂合金AZ61A在低應變速率(1.85×10-4/s)時,其抗壓強度及降伏強度是隨著溫度上升而降低,而在高應變速率(1.85×10-2/s)則是呈相反的關係 。 鋁合金7005在低應變速率(1.85×10-4/s)時,其抗壓強度及降伏強度是隨著溫度上升而增加,當測試溫度超過100℃時則開始下降,而在高應變速率的機械性質則是呈現隨著溫度增加而下降 。
在破斷面的觀察方面,鎂合金AZ61A及鋁合金7005拉伸測試之破斷面形態都屬於延性破斷,而且當測試溫度愈高時,材料破斷面的凹洞愈大。而在壓縮測試方面,鎂合金AZ61A及鋁合金7005之破斷形態都屬於劈裂破斷形態,而且不受應變速率及溫度的影響。
摘要(英) This study investigated mainly about the effect of environmental temperature and strain rate on tensile, compression test and different morphology of fracture surface for two different materials: HCP structure — magnesium alloy, AZ61A and FCC structure — Aluminum alloy, 7005. Both materials were took tensile test at higher strain rate and lower strain rate and show the same trend that UTS, yield stress were decreased with increasing environmental temperature form room temperature to 300℃; elongation show oppositely trend of both materials. In this study, 7005 showed dynamic recovery while tensile tested under lower strain rate and higher environmental temperature due to its high stacking fault energy and under the same test parameters for AZ61A, magnesium alloy showed dynamic recrystallization and soften while tested at high environmental temperature due to intrinsic stacking fault during plastic deformation. For compression test of AZ61A, compression strength and yield stress decreased with increasing environmental temperature under lower compression strain rate; it showed oppositely trend under higher compression rate. For compression test of 7005, compression strength and yield stress decreased with increasing environmental temperature while over 100℃ under lower compression strain rate; compression strength and yield stress decreased with increasing environmental temperature under higher compression strain rate.
For observation of morphology of fracture surface, both AZ61A and 7005 showed ductile rupture and the size of dimples on the fracture surface were enlarged with increasing environmental temperature. For compression test, both materials showed cleavage rupture regardless the strain rate and environmental temperature.
關鍵字(中) ★ 7005
★  AZ61A
★  動態再結晶
★  動態回復
★  疊差能
關鍵字(英) ★ 7005
★  AZ61A
★  dynamic recovery
★  stacking fault energy
論文目次 總目錄…………………………………………………………………………i
表目錄…………………………………………………………………………iv
圖目錄…………………………………………………………………………v
第一章 前言……………………………………………………………………1
第二章 文獻回顧……………………………………………………………2
2-1材料簡介……………………………………………………………………2
2-1.1鎂合金材料介紹…………………………………………………………2
2-1.2合金元素對鎂合金的影響………………………………………………3
2-1.3鋁合金材料介紹…………………………………………………………6
2-1.4合金元素對鋁合金的影響………………………………………………6
2-2拉伸、壓縮試驗…………………………………………………………10
2-2.1破裂(fracture)……………………………………………………10
2-2.2萬能試驗機………...…………………………………………………10
2-2.3拉伸、壓縮試驗介紹…………………………………………………10
2-2.4真實應力-真實應變曲線……………………………………………11
2-3破斷面的觀察……………………………………………………………12
第三章 理論探討……………………………………………………………14
3-1晶格結構分析……………………………………………………………14
3-1.1鋁的面心立方晶格結構簡介…………………………………………14
3-1.2鎂的六方緊密堆積晶格結構簡介……………………………………14
3-1.3面心立方與六方緊密堆積結構的比較………………………………15
3-2雙晶結構的介紹…………………………………………………………17
3-3動態回復(Dynamic Recovery)………………………………………18
3-4動態在結晶(Dynamic Recrystallization)………………………19
3-5相關文獻介紹……………………………………………………………20
第四章 實驗方法與步驟……………………………………………………23
4-1實驗材料…………………………………………………………………23
4-2試棒準備與規格…………………………………………………………23
4-2.1鎂合金(AZ61A)………………………………………………………23
4-2.2鋁合金(7005)………………………………………………………24
4-3實驗設備…………………………………………………………………24
4-3.1萬能拉伸試驗機………………………………………………………24
4-3.2掃描式電子顯微鏡……………………………………………………24
4-3.3實體顯微鏡……………………………………………………………24
4-4實驗步驟…………………………………………………………………25
4-5金相製作與觀察…………………………………………………………25
4-5.1試片製作………………………………………………………………25
4-5.2腐蝕液配方……………………………………………………………26
4-6實驗參數設定……………………………………………………………26
4-6.1實驗材料………………………………………………………………26
4-6.2拉伸實驗………………………………………………………………27
4-6.3壓縮實驗………………………………………………………………27
第五章 結果與討論…………………………………………………………28
5-1拉伸實驗之機械性質分析………………………………………………29
5-1.1鎂合金(AZ61A)拉伸機械性質分析……………………………….29
5-1.2鋁合金(7005)拉伸機械性質分析…………………………………33
5-2壓縮實驗之機械性質分析………………………………………………35
5-2.1鎂合金(AZ61A)壓縮機械性質分析………………………………35
5-2.2鋁合金(7005)壓縮機械性質分析…………………………………37
5-3鎂合金(AZ61A)與鋁合金(7005)
之拉伸、壓縮破裂形式分析…………………………………………38
5-3.1鎂合金(AZ61A)與鋁合金(7005)
之拉伸破裂形式分析…………………………………………………38
5-3.2鎂合金(AZ61A)與鋁合金(7005)
之壓縮破裂形式分析……………………………………………………41
5-3.3鎂合金(AZ61A)與鋁合金(7005)
之拉伸、壓縮差異…………………………………………………………42
第六章 結論…………………………………………………………………43
參考文獻……………………………………………………………………45
附錄…………………………………………………………………………142
參考文獻 1. 賴耿陽,”非鐵金屬材料”,復漢出版社,新竹,1998,pp.174?191.
2. 賴耿陽,”工業新材料之應用”,復漢出版社,新竹,1990,pp.35?38.
3. ASM, ”Magnesium Alloys”, Metals Handbook, vol.6, 9th, 1985, pp.425-434.
4. ASM, ”Magnesium Alloys”, Metals Handbook, vol.8, 8th, 1976, pp.314-319.
5. 張永耀,“金屬熔銲學”,徐氏基金會,台北,下冊,1976,pp.134-170.
6. Susan H.Slade, W.E.MercerⅡ, Economical Recycling of Magnesium Alloys
Through Improved Chemistry Control”, Proceeding of North AmerIcan Die
Casting Association, Cleveland Ohio, Oct. 18-21, 1993, pp.143-151.
7. ASM, ”Aluminum Alloys”, Metals Handbook, vol.8, 8th, 1976, pp.259.
8. ASM, ”Aluminum Alloys”, Metals Handbook, vol.8, 8th, 1976, pp.263.
9. 鑄造月刊,”鋁合金的冶金特性”,139期,台灣,民國90年4月.
10. ASM, ”Introduction to Tensile Testing”, Metals Handbook, vol.8 ,8th, 1976.
11. ASM, ”Axial Compression Testing”, Metals Handbook, vol.8, 8th, 1976.
12.陳永增,鄧惠源,“機械材料試驗”,高立出版社,台北,民國86年,第11頁.
13. George E. Dieter, “Fractography”, Mechanical Metallurgy, SI Metric Edition, 1988,
pp.254-256
14. George E. Dieter, “Fractography”, Mechanical Metallurgy, SI Metric Edition, 1988,
pp.263.
15. George E. Dieter, “Fractography”, Mechanical Metallurgy, SI Metric Edition, 1988,
pp.105.
16. Robert E. Reed-Hill, “Formal Crystallographic Theory of Twinning”, Physical Metallurgy Principles, 3rd Edition, 1994, pp.750-752.
17. George E. Dieter, “Fractography’, Mechanical Metallurgy, SI Metric Edition, 1988,
pp.107.
18. Robert E. Reed-Hill, “The Structure of Metals”, Physical Metallurgy Principles, 3rd Edition, 1994, pp.7-10.
19. George E. Dieter, “Fractography’, Mechanical Metallurgy, SI Metric Edition, 1988,
pp.136.
20. Robert E. Reed-Hill, “Dynamic Recovery”, Physical Metallurgy Principles, 3rd Edition, 1994, pp.181-183.
21. Robert E. Reed-Hill, “Recrystallization”, Physical Metallurgy Principles, 3rd Edition, 1994, pp.240-242.
22. J.P.Lin, T.C.Lei, and X.Y.An, “Dynamic Recrystallization during Hoot Compression in
Al-Mg alloy”, Scripta Metallurgica, vol.26, 1992, pp.1869-1874.
23. M.Mabuchi, K.Kubota, and K.Higashi, ”New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bar”, JIM, vol.36, No10, 1995, pp.1249-1254.
24. D.S.Park, S.W.Nam, “Effect of Manganese Dispersoid on the Mechanical Properties
in Al-Zn-Mg alloy”, Journal of Materials Science, vol.30, 1995, pp.1313-1320.
25. T.M.Yue, H.U.Ha, and N.J.Musson, “Grain Size Effects on the Mechanical
Properties of Some Sqeeeze Cast Light Alloy”, Journal of materials Science, vol.30,
1995, pp.2277-2283.
26. M.Mabuchi, K.Kubota, and K.Higashi, “Tensile Strength、Ductility and Fracture of
Magnesium-Silicon Alloy”, Journal of Materials Science, vol.31, 1996, pp.1529-1535.
27. T.S.Srivatsan, S.Anand, D.Veeraghavan, and V.K.Vasudeven, “The Tensile
Response and Fracture Behavior of an Al-Zn-Mg-Cu and Performance”, vol.6(3),
June, 1997, pp.349-358.
28. S. Lee, S. H.Lee, and D.H.Kin, “Effect of Y, Sr, and Nd Additions on the Microstructrue and Microfracture Mechanism of Squeeze-Cast AZ91-X Magnesium Alloys”, Metallurgical and Materials Transaction A, vol.29A, April, 1998, pp.1221-1235.
29. Y.Z.Lu, Q.D.Wang, W.J.Ding, X.Q.Zeng, and Y.P.Zhu, “Fracture Behavior of AZ91
Magnesium Alloy”, Materials Letters, vol.44, 2000, pp.265-268.
30. H.Watanabe, H.Tsutsui, T.Mukai, M.Kohzu, S.Tanabe, and K.Higashi, “Deformation
Mechanism in a Coarse-Grained Mg-Al-Zn Alloy at Elevated Temperature”, International Journal of Plasticity, vol.17, 2001, pp.387-397.
31. George E. Dieter, “The Tension Test’, Mechanical Metallurgy, SI Metric Edition, 1988, pp.295-304.
32. ASTM,“Designation:B557-81”, Metals Handbook, Vol.03, 1983, pp.64—80.
33. ASTM,“Designation:E9-81”, Metals Handbook, Vol.03, 1983, pp.140—152.
34. ASM,“Atlas of Microstructures of Industrial Alloys”, Metals Handbook,
Vol.7, 8th, 1976, pp.341—342.
35. Robert E. Reed-Hill, “Vacancies”, Physical Metallurgy Principles, 3rd Edition, 1994, pp.214—219.
36. Marc Andre Meyers, Krishan Kumar Chawla, “Relations Between Dislocation”, Mechanical Metallurgy Principles and Applications, 1984, pp.247—259.
指導教授 施登士(Teng-Shih Shih) 審核日期 2001-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡