博碩士論文 88323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.222.114.31
姓名 施俊豪(Chun-Hao Shih )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 變壓器內自然對流現象之研究
(Natural convection in electrical transformers)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於許多電力設備的操作與設計者來說,能夠得知系統發生熱點的最大溫度值與其位置是非常重要的。電力變壓器的使用期限與其包裹導體之絕緣層劣化率密切相關。變壓器所用之絕緣紙或壓紙板等絕緣材料,隨溫度的升高,因熱劣化的關係,機械強度逐漸降低,最後只要略受震動,絕緣物就會碎裂,造成破壞,因此為了確保絕緣層之合理使用期限,預防不正常的劣化速度,如何正確預知導體最熱點的溫度是必要的。隨著能源節約及空間的需求越來越重要,很多實際的工程應用是利用自然對流達到冷卻。變壓器系統通常由油泵引導流體進入冷卻流道達到散熱的效果,相較於強制對流冷卻,自然對流冷卻的目的即是提供系統操作者一個安全的估算,當強制對流外力消失時,物件仍不致燒毀。本論文的目的係以一桿上型變壓器作為研究的系統,分析工作流體在流道內之自然對流行為與其熱傳特性,並預測其熱點發生的位置。其幾何模型為一密閉的圓筒型容器,內部中心擺置一圓柱體與層列式的線圈,解析二維穩態自然對流紊流問題。研究重點在於藉由不同的Ra、Pr、線圈與鐵心熱性質、容器徑高比、線圈數目、區塊比等參數,來探討系統之溫度分佈、線圈熱點值與位置及熱傳之間的變化情形。結果發現其流動型態主要在容器頂部區域,產生由內往外循環之渦流,而在容器底部則多為停滯的狀態且溫度呈現熱分層的現象。參數分析的結果顯示,線圈區塊比與容器徑高比有效影響系統熱點值,將區塊比從3提高至5,可降低最大溫度值20%,徑高比由0.25增大至0.4可降低33%。本文並研究不同的邊界條件如何影響其系統溫度分佈。期以此變壓器自然對流的分析模式,對未來許多採用自然對流散熱設計之設施分析上有所幫助。
摘要(英) Knowledge of the temperature and position of the hot spot is very important for the design and operation of power transformers. The rate of deterioration of the winding insulation increases with the conductor temperature. Thus it is necessary to know the hottest conductor temperature in order to ensure a reasonable life of the insulation. Pumping working fluid through a set of ducts generally cools the windings of large modern transformers. However, compared with forced convection cooling, natural convection cooling offers minimal safety requirements to avoid burnout. In the present study, the natural convection heat transfer in a disc-type pole-top transformer is investigated. The study depicts flow pattern of cooling fluid inside the windings of a transformer and provides an estimate of the position of the hot spot. The geometrical model consists of two arrays of rectangular heat-dissipating blocks arranged in line in a transformer tank. A two-dimensional, steady and turbulent flow is simulated. The set of transport equations is solved numerically using the finite volume technique. Solutions are presented for the temperature distribution in the disc coils and cooling horizontal ducts of a transformer. The attention is focused on the parameters, such as the Prandtl number, aspect ratio of the tank, heat dissipation rate, thermophysical properties, configuration, number and block ratio of the heated coils.
The results show that the flow behavior has a primary clockwise circulating cell in the top region caused by buoyancy effects originating from the heat source. The bottom zone is almost stagnant and thermally stratified. The parametric study indicates that the block ratio, BR, and the aspect ratio, AR, have a significant influence. Increasing BR from 2 to 5, the maximum temperature drops by 20 percent. When aspect ratio increases from 0.257 to 0.4, the maximum temperature is lowered by 33 percent. The effects of other parameters are studied to arrive at qualitative suggestions that may improve the cooling design of the power transformers
關鍵字(中) ★ 參數分析
★  熱傳
★  紊流
★  自然對流
★  變壓器
關鍵字(英) ★ heat transfer
★  natural convection
★  turbulent
論文目次 中 文 摘 要I
英 文 摘 要II
致 謝III
TABLE OF CONTENTSIV
LIST OF FIGURESVI
LIST OF TABLESXIII
NOMENCLATUREXIV
CHAPTER 1 INTRODUCTION1
CHAPTER 2 MATHEMATICAL FORMULATION6
2.1DESCRIPTION OF GEOMETRY6
2.2GOVERNING EQUATIONS7
2.3DENSITY APPROXIMATIONS9
2.4THE DIMENSIONLESS FORM10
CHAPTER 3 NUMERICAL METHOD16
3.1DISCRETISATION16
3.2NON UNIFORM GRID DISTRIBUTION20
3.3NUMERICAL PROCEDURE21
3.4GRID INDEPENDENCE TEST24
3.5CODE VALIDATION25
CHAPTER 4 COMPUTATIONAL RESULTS AND DISCUSSIONS28
4.1FLOW PATTERN AND TEMPERATURE DISTRIBUTION30
4.2EFFECTS OF RAYLEIGH NUMBER LEVEL32
4.3EFFECTS OF PRANDTL NUMBER34
4.4EFFECTS OF COIL THERMAL CONDUCTIVITY36
4.5EFFECTS OF CORE SELECTION38
4.6EFFECTS OF BLOCK RATIO39
4.7EFFECTS OF CORE GEOMETRY40
4.8EFFECTS OF NUMBER OF COILS41
4.9EFFECTS OF PITCH RATIO42
4.10EFFECTS OF ASPECT RATIO42
4.11EFFECTS OF BOUNDARY CONDITIONS43
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS113
5.1CONCLUSIONS113
5.2RECOMMENDATIONS114
APPENDIX ASSOCIATED RAYLEIGH NUMBER116
REFERENCES118
參考文獻 1.ANSI/IEEE C57.92, IEEE Guide for Loading Mineral oil immersed Power Transformers up to and including 100 MVA with 55 or 65°CAverage Winding Rise, 1981.
2.R. Feinberg, Modern Power Transformer Practice, Mac Millan, London, Chapters 2 and 9, 1979.
3.L. Kiss, I. Szita, G. Ujhazy, Some Characteristic Design Problems of Large Power Transformers, 12.07, CIGRE, 1974.
4.P. H. G. Allen, Transformer Winding Thermal Design by Computer, IEE Conference Pub., No.51, pp. 589, 1969.
5.L. Imre, I. Szabo, A. Botai, Determination of the Steady State Temperature Field in Naturally Oil Cooled Disc Type Transformer, Int. Heat and mass transfer Conf., 2, pp. 123, 1978.
6.S. V. Pereingerova, M. Pivrnec, Temperature Distribution in the Coilof a Transformer Winding, Proc. IEE, 124, pp 128, 1977.
7.S. Bennon, Thermal Analysis of Transformer Load Cycles, Transactions, AIEE, III, Vol. 77, pp. 21-25, April 1958.
8.J. J. Bates and J. F. Lindsay, The possible use of Harmonic Analysis and Synthesis in the Calculation of the Temperature Variations of an Oil-Filled Transformer, Proceedings, Symposium on Electrical Machine Design, Coimbatore, India, pp. 99-114, October 13-15, 1960.
9.Allen, P. H. G., Transformer rating by hottest spot temperature, Electr. Times, pp. 33-38, March 1971.
10.IEC 76-2 Power Transformers: Temperature Rise, Revision of IEC Publication 76-2 (1976) 1990.
11.IEC 354 Loading Guide for Oil Immersed Power Transformers, Revision of IEC Publication 354, 1987.
12.A. J. Oliver, Estimation of Transformer Winding Temperatures and Coolant Flows using a General Network Method, IEE Proceedings, Vol. 127, No. 6, 1980.
13.R. Sarunac, Numerical Calculation of the Winding Temperatures and Coolant Flows in Power Transformer with ODAF type of Cooling, Proceedings of the Sixth International Conference on Numerical Methods in Thermal Problems, Electrotechnical Institute of RADE KONCAR, Swansea, UK, pp.1644-1654, 1989.
14.P. Venkateswarlu, A. R. Prasad, Numerical Prediction of the Temperature Distribution in the Coils of a Transformer Winding, International Conference on Large High Voltage Electric System, Paris, 29, Aug.-6 Sept, 1984.
15.I. T. Carstea, Program for Heat Transfer Analysis in Large Power Transformers Windings, Modeling, Measurement and Control A, Vol. 57, No. 33, pp. 31-39, 1994(AM SE Press).
16.G. F. Marsters, Arrays of Heated Horizontal Cylinders in Natural Convection, Int. J. Heat Mass Transfer, Vol. 15, pp. 921-933, 1972.
17.W. Rodi, Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale, Proc. 2nd Symp. On Turbulent Shear Flows, 1979.
18.B. E. Lauder, and D. B. Spalding, The Numerical Computation of Turbulent Flow, Comp. Meth. In Appl. Mech. & Eng., Vol. 3, pp. 269, 1974.
19.S. H. El Tahry, Equation for Compressible Reciprocating Engine Flows, AIAA J. Energy, Vol. 7, No. 4, pp. 345-353, 1983.
20.J. Boussinesq, Theorie Anaytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris, 1903.
21.A. D. Gosman, W.M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfstein, Heat and mass transfer in recirculating flows, Academic Press, London, 1969.
22.S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C, 1980.
23.Z. V. A. Warsi, Conservation form of the Navier-stokes Equations in General Non steady Coordinates, AIAA J., Vol. 19, pp.240-242, 1981.
24.P. J. Roache, Computational Fluid Mechanics, Hermosa Publishers, New Mexico, 1976.
25.D. M. Manole and J. L. Lage, Non Uniform Grid Accuracy Test Applied to the Natural Convection Flow within a Porous Medium Cavity, Numerical Heat Transfer, Part B, Vol. 23, pp. 351-368, 1993.
26.J. L. Lage and A. Bejan, The Ra-Pr Domain of Laminar Natural Convection in an Enclosure Heated from the Side, Numerical Heat Transfer, Vol. 19, pp. 21-41, 1991.
27.J. L. Lage, A. Bejan, and J. G. Georgiadis, On the Effect of the Prandtl Number on the Onset of Benard Convection, Int. J. Heat Fluid Flow, Vol. 12, pp. 184-188, 1991.
28.J. L. Lage, A. Bejan, and R. Anderson, Efficiency of Transient Contaminant Removal from a Slot Ventilated Enclosure, Int. J. Heat Mass Transfer, Vol. 34, pp. 2603-2615, 1991.
29.S. V. Patankar and D. B. Spalding, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows, Int. J. of Heat Mass Transfer, Vol. 15, pp. 1787, 1972.
30.G. X. Wang, H. L. Zhang and W. Q. Tao, Numerical Simulation of Natural Convection in Rectangular Enclosures with Discrete Heated Elements, Heat Transfer in Electronic and Microelectronic Equipment, Ed. by Arthur E. Bergles, Hemisphere Publ. Cop., pp. 197-209, 1990.
31.G.. De Vahl Davis, Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution, Int. J. Numerical Methods Fluids, Vol. 3, pp. 249-264, 1983.
32.M. Molki and M. Faghri, Conjugate Natural Convection Heat Transfer in a Vertical Annulus with Internal Circumferential Fins, Numerical Heat Transfer, Part A, Vol. 25, pp. 457-476, 1994.
33.周宜弘,同心圓環渠道之自然對流研究;國立交通大學碩士論文;新竹;民國八十年。
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2001-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明