博碩士論文 88323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.172.195.49
姓名 陳賢圖(Xan-Tu Cheng )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測
★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用
★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測
★ 四維質點影像測速技術與微尺度紊流定量量測★ 潔淨能源:超焓燃燒器研發
★ 小型熱再循環觸媒燃燒器之實驗研究及應用★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗使用泰勒-庫頁提(Taylor-Couette,T-C)流場,來探討重粒子偏好集聚之現象與其下沈之問題。T-C流場乃由兩同軸旋轉圓柱來產生眾多不同的流場形態,是目前流體力學領域最被了解的流場之一。有關粒子集聚觀測,主要是以高速攝影機配合高功率雷射切面,在只旋轉內圓柱而外圓柱固定不動的條件下,採用三種不同重粒子(鉛、鎢、銅)分別在不同轉速下之流場,來觀測在不同史托克斯數 (Stokes number,St),粒子於一反向旋轉渦對陣列中之濃度場偏好性集聚之現象。St為質點粒子的響應時間與紊流場中Kolmogorov時間尺度之比。實驗結果發現,在 時,粒子均勻分佈於渦對結構內;當 時,粒子會朝高應變率低渦度流場區域(渦外圍)集聚,使在高渦度低應變率區域(渦心)幾無粒子存在,粒子均集中於渦漩外圍層(層厚僅約為原渦寬度即兩圓柱間隙之10%);當 ,雖然大體結構分佈相似,但較多粒子開始出現在渦漩內層和渦心處。此結果驗證了直接數值模擬結果(Wang & Maxey 1993),更顯示泰勒-庫頁提渦對陣列為說明粒子偏好性集聚現象之最佳流場選擇。
在重粒子下沈速度研究方面,使用兩組高速攝影系統,透過由內外兩圓柱反向旋轉下所產生的無特徵結構紊流場,採用玻璃粒子以質點影像速度量測技術(PIV)來量測重粒子於此流場之下沈速度(Vs),初步結果發現,粒子平均下沈速度受紊流影響都會比其終端速度(Vt)來得大,且在St等於1附近時,下沈率有最大增加量,本實驗可能是第一個驗證紊流可增加粒子下沉速度之實驗。
摘要(英) This thesis investigates the preferential concentration and the settling velocity of heavy particles using a well-known Taylor-Couette(T-C) flow apparatus. The T-C apparatus consists of two concentric rotating cylinders which can generate many different flow regimes. For visualizations of particle preferential concentration, we use a high-speed laser sheet imaging technique in T-C flow when only the inner cylinder is rotated. Three different particles, lead, tungsten and copper particles with different mean diameters are used, such that the corresponding values of Stokes number(St) can be varied from 0 to 3. Here St is a time ratio of particle response to the Kolmogorov scale of turbulence. It is formd that these particles are uniformly scattered around these counter-rotating vortices when . As values of St increase up to unity, almost all particles are accumulated and concentrated at the edges of counter-rotating vortices where the strain rate is highest and the vorticity is lowest. In other words, there are no particles in these vortices’ core. The thickness of the particles’ accumulated region is only about 10% of the width of counter-rotating vortices. This is the so-called particle preferential phenomenon which was suggested by direct numerical simulation (Wang & Maxey 1993). The present experiment reveals that the T-C flow with only inner cylinder rotation is probably the best flow field to demonstrate the particle preferential phenomenon. For , a few particles can be formed in the core of there vortices.
Concerning the settling velocity of heavy particles in featureless turbulence which is generated by counter-rotating both cylinders, we employ glass particles and use the particle image velocimetry to measure mean particle settling velocities(Vs). Preliminary results show that values of Vs are greater than their corresponding terminal velocity (Vt) in still fluid.The increase of the settling rate reaches its maximum as .This experiment may be the first experiment to show that turbulence can increase the settling velocity of heavy particles.
關鍵字(中) ★ 下沈速度
★  偏好濃度
★  泰勒庫頁提流場
關鍵字(英) ★ preferential concentration
★  Taylor-Couette flow
論文目次 摘要 ……………………………………………………………………………I
英文摘要………………………………………………………………………II
誌謝 …………………………………………………………………………III
目錄……………………………………………………………………………IV
圖表目錄………………………………………………………………………VI
符號說明………………………………………………………………………IX
第一章 前言……………………………………………………………………1
1.1 動機 …………………………………………………………………1
1.2 問題所在 ……………………………………………………………2
1.3 解決提案 ……………………………………………………………3
1.4 論文概要 ……………………………………………………………4
第二章 文獻回顧………………………………………………………………6
2.1 二相紊流之基本特性 ………………………………………………6
2.2 重粒子濃度場偏好性集聚與下沈速度之探討 ……………………8
2.3 泰勒-庫頁提流場之流場結構分析 ………………………………12
2.4 流體中運動顆粒的受力分析………………………………………13
2.5 質點終端速度與史托克斯數之評估………………………………16
2.6 質點影像測速儀之基本原理………………………………………18
第三章 實驗裝置與量測分析方法 …………………………………………23
3.1 泰勒-庫頁提流場之實驗裝置 ……………………………………23
3.2 流場流速的量測……………………………………………………24
3.2.1 微粒植入系統與流場量測粒子……………………………24
3.2.2 LDV之量測 …………………………………………………25
3.3 重粒子與實驗參數範圍的選擇……………………………………27
3.3.1 內圓柱旋轉部份……………………………………………28
3.3.2 內外圓柱反向旋轉部份……………………………………29
3.4 內圓柱旋轉流場(粒子偏好集聚觀測)……………………………29
3.4.1 雷射光頁位置與粒子植入系統……………………………30
3.4.2 影像擷取……………………………………………………31
3.5 內外圓柱反向旋轉流場(粒子下沈速度量測)……………………32
3.5.1 雷射光頁位置與粒子植入系統……………………………32
3.5.2 影像擷取……………………………………………………33
3.5.3 影像處理和分析……………………………………………34
3.6 誤差分析……………………………………………………………36
第四章 結果與討論 …………………………………………………………52
4.1 紊流強度之估算量測………………………………………………52
4.2 內圓柱旋轉…………………………………………………………53
4.2.1 粒子運動情形………………………………………………53
4.2.2 粒子偏好集聚現象…………………………………………55
4.3 內外圓柱反向旋轉…………………………………………………58
第五章 結論與未來工作 ……………………………………………………79
5.1 粒子偏好集聚之觀測………………………………………………79
5.2 粒子下沈速度之量測………………………………………………80
5.3 未來工作……………………………………………………………81
參考文獻………………………………………………………………………83
參考文獻 Aldrian, R. J., “Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimety, ” Appl. Opt., Vol. 25, pp. 3855-3858 (1986).
Aldredge, R. C., Vaezi, V., and Ronney, P. D., “Premixed-Flame Propagation in Turbulent Talor-Couette Flow,” Combust. Flame, Vol. 115, pp. 395-405 (1998).
Andereck, C. D., Liu, S. S., and Swinney, H. L., “Flow Regimes in a Circular Couette System with in Dependently Rotating Cylinders,” J. Fluid Mech. Vol. 164, pp. 155-183 (1986).
Antonijoan, J., and Sanchez, J., “Transitions from Taylor Vortex Flow in a Co-rotating Taylor-Couette System,” Phys. Fluids, Vol. 12, pp. 3147-3159 (2000).
Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge, Cambridge University Press (1967).
Breedveld, V., Tripathi, A., and Acrivos, A., “The Measurement of the Shear-Induced Particle and Tracer Diffusivities in Concentrated Suspensions by a Novel Method,” J. Fluid Mech., Vol. 136, pp. 31-62 (1983).
Camp, C. E., Kolb, W. B., Sublette, K. L., and Cerro, R. L., “The Measurement of Square Channel Velocity Profiles Using a Microcomputer-Based Image Analysis System,” Exp. in Fluids, Vol. 10, pp. 87-92 (1992).
Coles, D., “Transition in Circular Couette Flow,” J. Fluid Mech., Vol. 21, pp. 385-425 (1965).
Crowe, C. T., Troutt, T. R., and Chung, J. N., Fluid Vorticity, New York, Kluwer Academic Publishers (1995).
Fenstermacher, P. R., Swinney, H. L., and Gollub, J. P., “Dynamical Instabilities and the Transition to Chaotic Taylor Vortex Flow,” J. Fluid Mech., Vol. 94, pp. 103-128 (1979).
Fessler, J. R., and Eaton, J. K., “Preferential Concentration of Heavy Particles in a Turbulent Channel Flow,” Phys. Fluids, Vol. 6(11), pp. 3742-3749 (1994).
Fessler, J. R., and Eaton, J. K., “Preferential Concentration of Particles by Turbulence,” Int. J. Multiphase Flow, Vol. 20, pp. 169-209 (1994).
Fessler, J. R., and Eaton, J. K., “Particle Response in a Planar Sudden Expansion Flow,” Exp. Thermal and Fluid Sci., Vol. 15, pp. 413-423 (1997).
Fessler, J. R., and Eaton, J. K., “Turbulence Modification by Particles in a Backward-Facing Step Flow,” J. Fluid Mech., Vol. 394, pp. 97-117 (1999).
Hinze, J. O., Turbulence, 2nd Ed., New York, McGraw Hill, (1972).
Maxey, M. R., “The Gravitational Settling of Aerosol Particles in Homogeneous Turbulence and Random Flow Fields,” J. Fluid Mech., Vol. 174, pp. 441-465 (1987).
Mei, R., “Effect of Turbulence on the Particle Settling Velocity in the Nonlinear Drag Range,” Int. J. Multiphase Flow, Vol. 256, pp. 273-284 (1994).
Pruvost, J., Legrand, J., Legentilhomme, P., and Doubliez, L., “Particle Image Velocimetry Investigation of the Flow-Field of a 3D Turbulent Annular Swirling Decaying Flow Induced by Means of a Tangential Inlet,” Exp. in Fluids, Vol. 29, pp. 291-301 (2000).
Raffel, M., Willert, C. E., and Kompenhans, J., Particle Image Velocimetry, New York, Springer (1998).
Rouson, D. W. I., and Eaton, J. K., “On the Preferential Concentration of Solid Particles in Turbulent Channel Flow,” J. Fluid Mech., Vol. 428, pp. 149-169 (2001).
Saffman, P. G., “The Lift on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech., Vol. 22, pp. 385-400 (1965).
Sato, Y., Hanzawa, A., Hishida, K., and Maeda, M., “Interactions Between Particle Wake and Turbulence in a Water Channel Flow (PIV Measurements and Modelling for Turbulence Modification),” Advanced in Multiphase Flow, Vol 29, pp. 27-40 (1995).
Shy, S. S., Ronney, P. D., Buckley, S. G., and Yakhot, V., “Experimental Simulation of Premixed Turbulent Combustion Using Aqueous Autocatalytic Reactions,” Proc. Combust. Inst., Vol. 24, pp. 543-551 (1992).
Squires, K. D., and Eaton, J. K., “Preferential Concentration of Particles by Turbulence,” Phys. Fluid A, Vol. 3, pp. 1169-1178 (1991).
Tam, W.T., and Swinney, H. L., “Mass Transport in Turbulent Couette-Taylor Flow,” Phys. Rev. A, Vol. 36, pp. 1347-1381 (1987).
Tchen, C. M., “Mean Value and Correlation Problems with the Motion of Small Particles Suspended in a Turbulent Fluid, Ph. D. Dissertation, Delft, Martinus Nijhoff, The Hague (1947).
Vaezi, V., Oh, E. S., and Alderdge, R. C., “High-Intensity Turbulence Measurements in a Taylor-Couette Flow Reactor,” Exp. Thermal and Fluid Sci. Vol. 15, pp. 424-431 (1997).
Veber, P., Dahl, J., and Hermansson, R., “Study of the Phenomena Affecting the Accuracy of a Video-Based Particle Tracking Velocimetry Technique,” Exp. in Fluids, Vol. 22, pp. 482-488 (1997).
Wang, L. P., and Maxey, M. R., “Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence,” J. Fluid Mech., Vol. 256, pp. 27-68 (1993).
Wells, M. R., and Stock, D. E., “The Effects of Crossing Trajectorirs on the Dispersion of Particles in a Turbulent Flow,” J. Fluid Mech., Vol. 136, pp. 31-62 (1983).
Wereley, S. T., and Lueptow, R. M., “Velocity Field for Taylor-Couette Flow with an Axial Flow,” Phys. Fluids, Vol. 11, pp. 3637-3649 (1999).
Willert, C. E., and Gharib, M., “Digital Particle Image Velocimetry,” Exp. in Fluids, Vol. 10, pp. 181-193 (1991).
Yang, C.Y., and Lei, U., “The Role of the Turbulent Scales on the Settling Velocity of Heavy Particles in Homogeneous Isotropic Turbulence,” J. Fluid Mech., Vol. 371, pp. 179-205 (1998).
Yeh, F., and Lei, U., “On the Motion of Small Particles in a Homogeneous Isotropic Turbulent Flow,” Phys. Fluids A, Vol. 3, pp. 2571-2586 (1991).
Yudine, M. I. “Physical Considerations on Heavy-Particle Dispersion,” Adv. Geophys., Vol. 6, pp. 185-191 (1959).
劉大有,“兩相流體動力學,” 高等教育出版社(1993)。
狩野 武,“粉粒體輸送裝置,” 復漢出版社(1993)。
指導教授 施聖洋(Shenqyang Shy) 審核日期 2001-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明