博碩士論文 88323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:34.239.179.228
姓名 謝明憲(Ming-Xian Xei )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 轉注成型充填過程中邊界效應之數值模擬
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 鈦合金整流板電化學加工技術研發★ 射出/壓縮轉注成型充填階段中流場特性之分析
★ 脈衝電化學加工過程中氣泡觀測與分析★ 金屬粉末射出成型二維毛細吸附脫脂及飽和度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在樹脂轉注射出成型充填過程中,樹脂於纖維束內、外的流動模式,直接影響氣泡之生成及位置,亦即影響了產品的品質。本文應用纖維蓆編織的特性,即纖維絲多集中於纖維束內,而纖維束與束之間隙則為無纖維區。因此,在無纖維區(纖維束與束之間隙)可使用Stokes方程式來描述樹脂的流動;而纖維束內,目前國內外研究多使用達西定律(Darcy’s Law),然而從文獻可知︰由於達西定律缺乏黏滯的剪應力項,因此會與Stokes方程式交界面產生速度不連續情形。因此,本文在纖維束內改使用Brinkman方程式來解決流場速度不連續問題,這是本文與目前國內外研究最大不同。在使用Brinkman方程式和Stokes方程式來求解流場時,由於纖維束內、外樹脂的流速不同,會使流場交界面產生一類似邊界層現象。因此,本文除了將完整模擬纖維束內、外流場運動外,也對樹脂在纖維束內流場形成的邊界層厚度及展開情形做一探討。藉由數值模擬的結果,將可使吾人更深入的了解在轉注成型充填階段,樹脂流動的詳細物理特性及其對成品品質的影響性。
摘要(英) Inside the fiber mats, the gaps between the fiber tows are the fiber free zones. The resin flow through the gap is assumed to obey the Stokes equation. Inside the fiber tows, large of literatures are found to be studied by Darcy’s law, while such a treatment would result in the discontinuity condition in simulated velocity on the interface which were against the gap and the fiber tow. Due to the difference of the velocity inside and outside fiber tows, the interface of the flow field would cause a quasi boundary layer phenomenon. Therefore, we use Brinkman equation instead of Darcy’s law in this study. The method not only simulate the motion inside and outside the fiber tows but discuss the development and formulation of the boundary layer thickness. The results of numerical simulation are convenient and effective in realizing the defect of filling process of Resin Transfer Molding. The physical meanings for such a resin motion and their influences on the quality of product are also discussed.
關鍵字(中) ★ Brinkman方程式
★  stokes方程式
★  樹脂轉注成型
關鍵字(英) ★ Brinkman equation
★  Resin Transfer Molding
論文目次 摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
符號說明 Ⅷ
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究方向 13
第二章、理論模式 14
2-1 纖維束內流場 14
2-2 纖維束外流場 15
2-3 空孔度 16
2-4 滲透度 16
2-5 毛細數 17
2-6 無因此分析 18
第三章、數值方法 20
3-1 數值模擬 20
3-2 數值計算步驟 21
3-3 流動面的收斂 22
第四章、結果與討論 25
第五章、結論 30
第六章、參考文獻 32
表 43
圖 44
附錄 70
附錄A 70
表 目 錄
表1纖維蓆空孔度與滲透度對照表 43
圖 目 錄
圖1-1纖維束編織示意圖 44
圖2-1纖維束內、外流場交互作用情形 45
圖2-2交界面移動元素路徑示意圖 46
圖2-3樹脂為牛頓流體假設之合理性 47
圖2-4物理定義域示意圖 48
圖2-5邊界條件示意圖 49
圖3-1(a)主要程式流程圖 50
圖3-1(b)Simpler程式流程圖 51
圖3-2流場格點座標分佈情形 52
圖3-3流動面擷取方法示意圖 53
圖4-1(a)(b)利用非交錯格點所模擬壓力場示意圖 54
圖4-2交錯隔點配置示意圖 55
圖4-3縫隙與纖維束平均入口壓力隨時間變化圖 56
圖4-4(a)當纖維束滲透度為 時,流動面隨時間變化情形 57
圖4-4(b)當纖維束滲透度為 時,流動面隨時間變化情形 58
圖4-4(c)當纖維束滲透度為 時,流動面隨時間變化情形 59
圖4-5邊界層厚度隨纖維束滲透度增減之變化圖 60
圖4-6(a)當縫隙大小 為8時,流動面隨時間變化情形 61
圖4-6(b)當縫隙大小 為10時,流動面隨時間變化情形 62
圖4-6(c)當縫隙大小 為12時,流動面隨時間變化情形 63
圖4-7邊界層厚度隨縫隙大小增減之變化 64
圖4-8(a)(b) 當縫隙大小 分別為1,6時,流場壓力分佈情形 65
圖4-8(c)(d) 當縫隙大小 分別為10,16時,流場壓力分佈情形 66
圖4-9(a)縫隙平均入口壓力與縫隙大小關係圖 67
圖4-9(b)纖維束平均入口壓力與縫隙大小關係圖 68
圖4-10文獻[66]所模擬之流動面隨時間變化圖 69
參考文獻 1. J. P .Coulter and S. I. Guceri, “Resin Transfer Molding , Process view, Modeling and Research Opportunities,” Proc. of the ASME Manufacturing Inter. Altlanta, 79-86 (1988).
2. M. V. Bruschke and S. G. Advani, “A finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media,” Polymer Composites, 11, 398-405 (1990).
3. W. B. Young, K. Rupel, K. Han, L. J. Lee and M. J. Liou, “Analysis of Resin Injection Molding in Molds with Preplaced Fiber Mats. II: Numerical Simulation and Experiments of Mold
Filling,” Polymer Composites, 12, 30-38 (1991).
4. W. B. Young, K. Han, L. H. Fong, L. J. Lee and M. J. Liou, “Flow Simulation in Molds with Preplaced Fiber mats,” Polymer Composites, 12, 391-403 (1991).
5. F. Trochu and R. Gauvin, “Limitations of a Boundary-Fitted Finite Difference Method for the Simulation of the Resin Transfer Molding Process,” J. of Reinforced Plastics and Composites, 11, 772-786 (1992).
6. A. W. Chan and S. T. Hwang, “Modeling Nonisothermal Impregnation of Fibrous Media With Reactive Polymer Resin,” Polymer Engineering and Science, 32, 310-318 (1992).
7. C. H. Wu, T. J. Wang and L. J. Lee, “Trans-Plane Fluid Permeability Measurement and Its Applications in Liquid Composite Molding,” Polymer Composites, 15, 289-298 (1994).
8. K., L. Han, L. J. Lee and M. Liou, “Fiber Mat Deformation in Liquid Composite Molding. I: Experiment Analysis,” Polymer Composites, 14, 144-150 (1993) .
9. K. Han, L. J. Lee and M. Liou, “Fiber Mat Deformation in Liquid Composite Molding. II: Modeling,” Polymer Composites, 14, 151-160 (1993).
10. L. Fong, J. Xu and L. J. Lee, “Preforming Analysis of Thermoformable Glass Fiber Mats - Deformation Modes and Reinforcement Characterization,” Polymer Composites, 15, 134-146 (1994).
11. T. J. Wang, C. H. Wu and L. J. Lee, “In-Plane Permeability Measurement and Analysis in Liquid Composite molding,” Polymer Composites, 15, 278-288 (1994).
12. K. Han, L. Trevino, W. B. Young, L. J. Lee and M. J. Liou, “Fiber Mat Deformation During Mold Filling in Structural RIM,” The 46th Annual Conference of the Composites Institute of the Society of the Plastics Industry Inc., Feb., 18-21 (1991).
13. C. J. Wu, L. W. Hourng and J. C. Liao, “Numerical and Experimental Study on the Edge Effect of Resin Transfer Molding,” J. of Reinforced Plastics and Composites, 14, 694-722 (1995).
14. C. J. Wu and L. W. Hourng, “Permeable Boundary Condition For Numerical Simulation in Resin Transfer Molding,” Polymer Engineering and Science, 35, 1272-1281 (1995).
15. L. Trevino, K. Rupel, W. B. Young, M. J. Liou and L. J. Lee, “Analysis of Resin Injection Molding in Molds with Preplaced Fiber Mats I: Permeability and Compressibility Measurements,” Polymer Composites, 12, 20-29 (1991).
16. B. R. Gebart, “Permeability of Unidirectional Reinforcements for RTM,” J. of Composite Materials, 26, 1100-1133 (1992).
17. A. W. Chan and S. T. Hwang, “Anisotropic In-plane Permeability of Fabric Media,” Polymer Engineering and Science, 31, 1233-1239 (1991).
18. A. W. Chan, D. E. Larive and R. J. Morgan, “Anisotropic Permeability of Fiber Preforms: Constant Flow Rate Measure,” J. of Composite Material, 27, 996-1008 (1993).
19. R. S. Parnas and A. J. Salem, “A Comparison of the Unidirectional and Radial In-plane Flow of Fluids Through Woven Composite Reinforcements,” Polymer Composites, 14, 383-394 (1993).
20. Z. Cai and A. L. Berdichevsky, “Numerical Simulation on the Permeability Variations of a Fiber Assembly,” Polymer Composites, 14, 529-539 (1993).
21. A. L. Berdichevsky and Z. Cai, “Preform Permeability Predictions by Self-Consistent Method and Finite Element Simulation,” Polymer Composites, 14, 132-143 (1993).
22. Z. Cai and A. L. Berdichevsky, “An Improved Self-Consistent Method for Estimating the Permeability of a Fiber Assembly,” Polymer Composites, 14, 314-323 (1993).
23. R. Gauvin, A. Kerachni and B. Fisa, “Variation of Mat Surface Density and Its Effect on Permeability Evaluation for RTM Modeling,” J. of Reinforced Plastics and Composites, 13-Apr, 371-383 (1994).
24. A. Hammami, F. Trochu, R. Gauvin and S. Wirth, “Directional Permeability Measurement of Deformed Reinforcement,” J. of Reinforced Plastics and Composites, 15, 552-562 (1996).
25. Wen-Bin Young, “Three-Dimensional Nonisothermal Mold Filling Simulations in Resin Transfer Molding,” Porlymer Composites, 15, 118-127 (1994).
26. K. J. Bowles and S. Frimpong, “Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites,” J. of Composite Material, 26, 1487-1509 (1992).
27. J. S. Hayward and B. Harris, “Effect of Process Variables on The Quality of RTM Mouldings,” SAMPE J., 26, 39-46 (1990).
28. T. S. Lundstrom, B. R. Gebart and C. Y. Lundemo, “Void Formation in RTM,” J. of Reinforced Plastics and Composites, 12, 1339-1349 (1993).
29. T. S. Lundstrom and B. R. Gebart, “Influenced From Process Parameters on Void Formation in Resin Transfer Molding,” Polymer Composites, 15, 25-33 (1994).
30. Y. T. Chen, H. T. Daves and C. W. Macosko, “Wetting of Fiber Mats for Composites Manufacturing: I. Visualization Experiments,” AICHE Journal, 41, 2261-2273 (1995).
31. S. G. Damani and L. J. Lee, “The Resin-Fiber Interface in Polyurethane and Polyurethane-Unsaturated Polyester Hybrid,” Polymer Composites, 11, 174-183 (1990).
32. C. W. Macosko, RIM Fundamentals of Reaction Injection Molding, Oxford University, New York (1989).
33. T. A. K. Kadiq, S. G. Advani and R. S. Parnas. “Experimental Investigation of Transverse Flow Through Aligned Cylinders,” International J. Multiphase Flow, 21, 755-774 (1995).
34. A. W. Chan and R. J. Morgan, “Modeling Preform Impregnation and Void Formation in Resin Transfer Molding of Unidirectional Composites,” SAMPE QUARTERLY, April., 48-52 (1992).
35. A. W. Chan and R. J. Morgan, “Tow Impregnation During Resin Transfer Molding of Bi-Directional Nonwoven Fabrics,” Polymer Composites, 14, 335-340 (1993).
36. R. S. Parnas and F. R. Phelan Jr., “The Effect of Heterogeneous Porous Media on Mold Filling in Resin Transfer Molding,” SAMPE QUARTERLY, January., 53-60 (1991).
37. Y. T. Chen, C. W. Macosko and H. T. Daves, “Wetting of Fiber Mats for Composites Manufacturing: II. Air Entrapment Model,” AICHE Journal, 41, 2274-2281 (1995).
38. W. B. Young, “The Effect of Surface Tension on Tow Impregnation of Unidirectional Fibrous Preform in Resin Transfer Molding,” J. of Composite Materials, 30, 1191-1209 (1996).
39. G. L. Batch, Y. T. Chen. and C. W. Macosko, “Capillary Impregnation of Aligned Fibrous Beds: Experiments and Model,” J. of Reinforced Plastics and Composites, 15, 1027-1051 (1996).
40. N. Patel, V. Rohatgi and L. J. Lee, “Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Undirection Stitched Fiberglass Mat,” Polymer Engineering and Science, 35, 837-851 (1995).
41. N. Patel and L. J. Lee, “Effects of Fiber Mat Architecture on Void Formation and Removal in Liquid Composite Molding,” Polymer Composites, 16, 386-399 (1995).
42. V. Rohatgi, N. Patel and L. J. Lee, “Experimental Investigation of Flow-Induced Microvoids During Impregnation of Unidirectional Stitched,” Polymer Composites, 17, 161-170 (1996).
43. N. Patel, V. Rohatgi, and L. J. Lee, “Influence of Processing and Material Variables on Resin-Fiber Interface in Liquid Composite Molding,” Polymer Composites, 14, 161-172 (1993).
44. A. D. Mahale, R. K. Prud'homme and L. Rebenfeld, “Quantitative Measurement of Voids Formed During Liquid Impregnation of Nonwoven Multifilament Glass Networks Using an Optical Visualization Technique,” Polymer Engineering and Science, 32, 319- 326 (1992).
45. W. B. Young and C. W. Tseng, “Study on the Pre-Heated Temperatures and Injection Pressures of the RTM Process,” J. of Reinforced Plastics and Composites, 13, 467-482 (1994).
46. J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, New York (1972).
47. F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, Academic Press, New York (1979).
48. T. A. Witten and L. M. Sander, “Diffusion-Limited Aggregation,” Physical Review B, 27, 5686-5697 (1983).
49. R. Chandler, J. Koplik, K. Lerman and J. F. Willemsen, “Capillary Displacement And Percolation In Porous Media,” J. Fluid Mech., 119, 249-267 (1982).
50. M. M. Dias and A. C. Payatakes, “Net Models For Two-Phase Flow In Porous Media,” Part 1.Immiscible Microdisplacement of Nonwetting Fluids” J. Fluid Mech., 164, 305-336 (1986).
51. N. Patel and L. J. Lee. “Modeling of Void Formation and Removal in Liquid Composite Molding. Part I: Wettability Analysis,” Polymer Composites, 17, 96-103 (1996).
52. N. Patel and L. J. Lee. “Modeling of Void Formation and Removal in Liquid Composite Molding. Part II: Model Development and Implementation,” Polymer Composites, 17, 104-114 (1996).
53. C.Y. Chang and L.W. Hourng, “Study on Void Formation in Resin Transfer Molding,” Polymer Engineering and Science, 12, 809-818 (1998).
54. C.Y. Chang and L.W. Hourng, “Numerical Simulation for the Transverse Impregnation in Resin Transfer Molding,” J. of reinforced Plastics and Composites, 17, 165-182 (1998).
55. K. M. Pillai and S. G. Advani. “Numerical Simulation of Unsaturated Flow in Woven Fiber Preforms During the Resin Transfer Molding Process,” Polymer Composites, 19, 71-80 (1998).
56. G. S. Beavers and D. D. Joseph, “Boundary Conditions at a Naturally Permeable Wall,” J. Fluid Mechanics, 30, 197-207 (1967).
57. I. P. Jones, “Low Reynolds Number Flow Past a Porous Spherical Shell,” Proc. Camb. Phil. Soc., 73, 231-238 (1973).
58. S. Haber and R. Mauri, “Boundary Conditions for Darcy’s Flow through Porous Media,” Int. J. Multiphase Flow, 9, 561-574 (1983).
59. R. A. Wooding, “Steady State Free Thermal Convection of Liquid in a Saturated Permeable Medium,” J. Fluid Mechanics, 2, 273-285 (1957).
60. H. C. Brinkman, “A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles,” Appl. Sci. Res., A1, 27-34 (1947a).
61. H. C. Brinkman, “On the Permeability of Media Consisting of Closely Packed Porous Particles,” Appl. Sci. Res., A1, 81-86 (1947b).
62. D. A. Nield and A. Bejan, Convection in Porous Media, Springer-Verlag, New York (1992).
63. P. D. Thomas and J. F. Middlecoff, “Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equation,” AIAA J., 18, 654-656 (1980).
64. 張智淵, 轉注成型充填過程中氣泡形成之數值模擬, 國立中央大學機械工程研究所博士論文(1997).
65. Suhas V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publications, New York (1980).
66. Issacson E. and Keller H.B., Analysis of Numerical Methods, Wiley, New York (1966).
67. Todd J., Survey of Numerical Analysis, McGraw-Hill, New York (1962).
68. Schoenberg I. J., Quarterly of applied Mathematics, 4, 45-99 (1946).
69. Kreyzing Z., Advanced engineering Mathematics, Wiley, New Work (1988).
70. 廖致欽, 轉注成型之滲透率的量測與流場觀察, 國立中央大學機械工程學系碩士論文(1994).
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2001-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明