博碩士論文 88323107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:34.237.51.35
姓名 林昱成(Yu-Cheng Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測
(Robust H2/H(Infinity) Control/Filtering for Time-Delay Takagi-Sugeno Fuzzy Systems)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 寬鬆耗散性模糊控制-波雅定理★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 篇論文主題有三:
(一).現有時延系統之穩定度分析方法之探討。且針對特定時間延遲情況,提出更寬鬆的穩定度條件,及更新的解決方法。
(二).針對以 T-S 模糊模型表示之時延非線性系統,分別設計出狀態迴授控制器、靜態輸出迴授控制器及濾波器,並使之達成 H2 或 H∞ 性能要求。
(三).在設計靜態輸出回授控制器時,解決雙線性矩陣不等式 (BMI) 之求解的問題。
T-S 模糊模型的優點在於其可完全代表一個非線性系統,因此針對一個非線性時間延遲系統,且透過 Lyapunov 定理,T-S 模糊模型提供一套系統化的方法來研究該非線性時間延遲系統之穩定度問題與性能要求。在使用這套方法時,為避免模糊規則數太多所造成控制器或濾波器求解不易的問題,非線性時延系統與 T-S 模糊模型之間會存有誤差,為使此誤差不至於影響所求得控制器或濾波器對原有非線性時延系統之控制或估測效益,本論文引用強健控制概念將誤差以參數不確定項 (norm bounded uncertainty) 來表示,因此可確保原系統與模型之間的誤差為零,即非線性時延系統可精確的表達成具有不確定項的 T-S 時延模糊模型。
現有的時延系統的分析方法主要分成兩大部分:
1. Lyapunov-Razumikhin 法。
2. Lyapunov-Krasovskii 法。
Lyapunov-Razumikhin 法是最早用於時延系統的分析方法,然由於其本身條件限制,已漸漸不受青睞。
Lyapunov-Krasovskii 法是目前最常見的分析方法,本論文也將採用此方法用於穩定度分析。除此之外,本論文也將提出一套方法來修正採用 Lyapunov-Krasovskii 法時所造成之延遲時間之變動率(rate of varying on delay-times)受限的問題。另外,本論文也將提出一套有別於前述兩種方法之新的穩定度分析技巧。再者,為了便於完整表達時延系統之分析技巧,延遲時間可分成以下四種類別:
1. 延遲時間固定且已知 (fixed and known delay time)。
2. 延遲時間固定且未知 (fixed but unknown delay time)。
3. 延遲時間變動且變動率小於一 (time-varying delay with rate of varying less than 1)。
4. 延遲時間變動且變動率不受限 (time-varying delay with rate of varying being unlimited)。
在連續系統中,由於固定的延遲時間之已知或未知並不影響分析方法,故一併討論。且在現有的文獻中,延遲時間皆受限於變動率小於一之限制,也就是這些文獻只能處理微小變動的延遲時間問題。因此,本論文提出一套新的方法移除此項限制,也就是說大變動的延遲時間是允許的。
至於在離散系統中,由於不涉及微分動作,故類別 2. 3. 4. 之解法相同,因此僅討論延遲時間固定且已知,及延遲時間未知兩種情況。在延遲時間固定且為已知的情況下,本論文亦提出一個新的方法可使穩定條件比現有方法之條件更加寬鬆。
針對上述具有不確定項的 T-S 時延模糊模型,本論文根據平行分散式補償器 (Parallel Distributed Compensation, PDC) 的概念,分別設計狀態回授控制器、靜態輸出回授控制器及 Luenberger 濾波器,並探討其性能控制或性能估測問題。
狀態回授控制問題中,本篇採用一般常見之 PDC 形式的狀態回授控制器,根據 Lyapunov 定理及重新定義變數後,推導出可使系統穩定並滿足性能要求之線性矩陣不等式形式 (LMI) 的充分條件,利用電腦求出所需之控制器增益。控制系統中,當系統狀態無法完全獲知時,則必須採用估測器獲得所需的資訊或直接以輸出回授做控制,因此本論文另一個課題即是探討靜態輸出回授控制問題。在靜態輸出回授控制中,最大的問題在於所推導出的穩定或性能條件是以雙線性矩陣不等式 (BMI) 的形式呈現,而 BMI 無法如同 LMI 般可輕易地由現有工具程式求解。因此,此部份的重點放在如何求解 BMI 的問題上,本論文利用以下兩種方法來解決其 BMI 求解問題:
1. V-K 疊代線性矩陣不等式 (V-K iterative LMI)。
2. 系統相似型轉換 (Similarity Transformation)。
透過這些方法,可將輸出回授性能控制問題中的 BMI 條件轉換為 LMI 形式來求解,或者經由假設特定變數並反覆求解某些 LMI 來達到求解 BMI 的目的。另外,在文末亦說明了動態輸出回授控制與靜態輸出回授控制間的關連性,所以上述方法亦可應用於求解動態輸出回授的控制器增益。
在濾波器的設計部分,採用的是 Luenberger 形式,同樣地透過 Lyapunov 定理及上述時延系統的分析方法,同樣地各提出一組以線性矩陣不等式 (LMI) 形式表示的充分條件,可同時使誤差系統穩定,並達成所要之性能需求。
上述之穩定度與性能問題乃是針對具有參數不確定項之 T-S 時延模糊模型所做的探討,無論連續或離散時間系統皆考慮其中。由於具有不確定項的 T-S 時延模糊模型可精確的表達非線性時間延遲系統,因此,所設計的控制器或濾波器將可直接用於穩定或估測原有非線性時延系統,並達到所要求的性能限制。
摘要(英) In this dissertation, several methods for a class of uncertain Takagi-Sugeno fuzzy models with time delays are proposed. Via Lyapunov theory, the asymptotical stability of delayed fuzzy systems is assured. In addition to stability issue, this
dissertation also investigates the system performances including H∞ , H2 and mixed-norm considerations.
Applying Lyapunov-Krasovskii approach rather than
Lyapunov-Razumikhin to analyzedelayed systems is the most popular method nowadays due to reason that the performance considerations can be incorporated. Moreover, the characteristics/classifications of delay time is one of the most important and interesting subjects in delayed schemes. For the sake of completeness, delay time can be classified into four categories such as
(a). fixed and known delay time,
(b). fixed but unknown delay time,
(c). time-varying delay with rate of varying less than 1,
(d). time-varying delay with rate of varying unlimited.
For discrete-time systems, Lyapunov-Krasovskii approach generates almost the same derivational techniques for case (b), (c) and (d). Similarly, for continuous-time systems, the techniques for case (a), (b) and (c) are the same. Therefore, the discussions of delay systems are organized in four parts such as
1. discrete-time systems with fixed and known delay time,
2. discrete-time systems with varying or unknown delay time,
3. continuous-time systems with fixed or slow-varying delay time,
4. continuous-time systems with fast-varying delay time.
In the first case, a new method is proposed in this dissertation. Via a theoretical proof, the relaxation of our approach in comparison with existing ones is guaranteed. As for the third
case investigating the fixed or slow-varying delay time for continuous-time systems, the existing literature have a limitation on derivative of delay time being less than one. This is why slow-varying case is named after. However, this limitation is not always satisfied, or the information of it is not available at all time, especially in filtering frameworks. Therefore two approaches are offered to remove this restriction. In other words, analyzing a nonlinear system subject to fast-varying delay time is allowed. We will refer to this case as
the fourth case.
Moreover, the stabilization and estimation are also included in this dissertation.Although the state feedback controller is a typical design approach. the system states are not always
completely available, thus an idea of stabilizing systems via output signals arises and is known as static output feedback regulators. It is well known that the output feedback control is a bilinear matrix inequality (BMI) problem and that the feasible solutions can not be obtained via existing convex algorithms. A reasonable approach known as iterative LMI (ILMI) is utilized to
solve this BMI problem but the solvability may depend on the initial guess. Therefore the second method, similarity transformation, is proposed to convert the BMI problems into an LMI. Since a system with or without similarity transformation
applied does not change its stabilizability. Therefore regulators determined from transformed systems can stabilize the original systems successfully. Since dynamic output feedback controllers can be converted into static output feedback regulators via augmenting some state vectors, the proposed methods for static output feedback controls can be directly implied to dynamic controllers.
Although there are two basic types of filters, the Luenberger H∞ filters are more robust than the Kalman-type since the advantage of using a Luenberger filter in comparison with a Kalman filter is that the former needs no statistical assumption on the exogenous signals. Therefore a Luenberger filter is employed in this dissertation to achieve our objectives in the filtering problems.
Since nonlinear systems can be exactly represented by a class of Takagi-Sugeno fuzzy models with norm-bounded parametric uncertainties, the proposed approaches can directly be extended to stabilize/estimate such retarded nonlinear systems.
關鍵字(中) ★ 雙線性矩陣不等式
★ 線性矩陣不等式
★ H2/H∞濾波
★ H2/H∞控制
★ 強健控制
★ Takagi-Sugeno (T-S) 模糊模型
★ 時延系統
關鍵字(英) ★ Bilinear matrix inequality (BMI)
★ Linear matrix inequality (LMI)
★ H2/H∞ filtering
★ H2/H∞ control
★ Robust control
★ Time-delay systems
★ Takagi-Sugeno (T-S) fuzzy model
論文目次 Abstract viii
Notations xi
List of Figures xiv
List of Tables xv
1 Introduction 1
1.1 Overview 1
1.2 Delay Systems Analysis 3
1.3 Motivations and Main Contributions 5
1.4 Organization of This Dissertation 7
2 Preliminaries 9
2.1 Uncertain Takagi-Sugeno Delay Fuzzy Models 10
2.2 Controller/Filter Designs 14
2.2.1 State Feedback Controller 14
2.2.2 Static Output Feedback Controller 15
2.2.3 Luenberger Filter 16
2.3 Control/Filtering Objectives 18
2.4 Useful Tools 20
3 DFS: Varying or Unknown Delay Time 24
3.1 State Feedback Controller Design 25
3.2 Static Output Feedback Controller Design 30
3.2.1 Method 1: ILMI Approach 30
3.2.2 Method 2: Similarity Transformation Approach 34
3.3 Luenberger Filter Design 39
3.4 Numerical Simulations 43
3.5 Summary 46
4 DFS: Fixed and Known Delay Time 50
4.1 Methods Analyzed 51
4.2 State Feedback Controller Design 56
4.3 Static Output Feedback Controller Design 63
4.4 Luenberger Filter Design 68
4.5 Numerical Simulations 71
4.6 Summary 75
5 CFS: Fixed or Slow-Varying Delay Time 78
5.1 State Feedback Controller Design 78
5.2 Static Output Feedback Controller Design 85
5.3 Luenberger Filter Design 89
5.4 Numerical Simulations 91
5.5 Summary 95
6 CFS: Fast-Varying Delay Time 98
6.1 Method 1: Lyapunov-Krasovskii Approach 99
6.1.1 State Feedback Controller Design 99
6.1.2 Static Output Feedback Controller Design 107
6.1.3 Luenberger Filter Design 111
6.2 Method 2: Exponential Stability Approach 114
6.2.1 State Feedback Controller Design 115
6.2.2 Static Output Feedback Controller Design 118
6.2.3 Luenberger Filter Design 121
6.3 Numerical Simulations 123
6.4 Summary 128
7 Conclusion 132
Bibliography 136
Appendix A: Dynamic Output Feedback Control Syntheses 147
參考文獻 M. Vidyasagar, Nonlinear systems analysis, Englewood Cliffs, NJ: Prentice-Hall Inc., 1993.
H. Khalil, Nonlinear systems, Englewood Cliffs, NJ: Prentice-Hall, 1996.
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
L. Wang, A course in fuzzy systems and control, Upper Saddle River, NJ: Prentice-Hall, 1997.
H. Ying, Sufficient conditions on general fuzzy systems as function approximators, Automatica, vol. 30, no. 3, pp. 521--525, 1994.
K. Zeng, N. Zhang, and W. Xu, A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators, IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 773--780, Dec. 2000.
H. Wang, J. Li, D. Niemann, and K. Tanaka, T-S fuzzy model with linear rule consequence and PDC controller: a universal framework for nonlinear control systems, Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio, TX., 2000, pp. 549--554.
B. Chen, C. Tseng, and H. Uang, Robustness design of nonlinear dynamic systems via fuzzy control, IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 571--585, Oct. 1999.
K. Tanaka and H. Wang, Fuzzy control systems design: a linear matrix inequality approach, New York, NY: John Wiley & Sons, Inc., 2001.
T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems, IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 525--538, Aug. 2001.
M. Lin, Model construction, robust stabilization and H2/H∞ control for T-S fuzzy models Ph.D. dissertation, National Central University, Jhongli, TW, 2003.
M. Sugeno and G. Kang, Structure identification of fuzzy model, Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
K. Tanaka, T. Taniguchi, and H. Wang, Generalized Takagi-Sugeno fuzzy systems: rule reduction and robust control, in Proc. of 7th IEEE Conf. on Fuzzy Systems, 2000.
Y. Lin and J. Lo, Robust H∞ filtering for discrete-time fuzzy systems with time delays, in Proc. 10th Nat'l Conf. Fuzzy Theory and Appl., Shinchu, TW, Nov. 2002, pp. 17--22.
Y. Lin and J. Lo, Robust mixed H2/H∞ filtering for time-delay fuzzy systems, IEEE Trans. Signal Processing, 2005, to be published.
K. Tanaka, T. Ikeda, and H. Wang, Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250--265, May 1998.
Y. Cao and P. Frank, Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems, IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 406--415, Aug. 2000.
K. Tanaka, T. Hori, and H. Wang, A fuzzy Lyapunov approach to fuzzy control system design in, American Control Conference, vol. 6, Arlington, VA, 2001, pp. 4790 --4795.
K. Tanaka, T. Hori, and H. Wang, A dual design problem via multiple Lyapunov functions, in Proc. 10th IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 --391.
T. Guerra and W. Perruquetti, Non quadratic stabilization of discrete Takagi-Sugeno fuzzy models in, FUZZ-IEEE2001 Conference, vol. 1, Melbourne, AU, 2001, pp. 1271--1274.
M. Johansson, A. Rantzer, and K.-E. Arzen, Piecewise quadratic stability of fuzzy systems, IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 713--722, Dec. 1999.
H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 324--332, Apr. 2001.
K. Tanaka, T. Taniguchi, and H. Wang, Fuzzy control based on quadratic performance function -- a linear matrix inequality approach, in Proc. of 37th IEEE Conf. on Deci. & Contr., Tampa, FL., Dec. 1998, pp. 2914--2919.
E. Kim and H. Lee, New approaches to relaxed quadratic stability condition of fuzzy control systems, IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 523--534, Oct. 2000.
J. Lo and M. Lin, Robust H∞ nonlinear control via fuzzy static output feedback, IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., vol. 50, no. 11, pp. 1494--1502, Nov. 2003.
J. Lo and M. Lin, Robust H∞ nonlinear modeling and control via uncertain fuzzy systems, Fuzzy Sets and Systems, vol. 143, no. 2, pp. 189--209, 2004.
C. de Souza, M. Fu, and L. Xie, H∞ analysis and synthesis of discrete-time systems with time-varying uncertainty, IEEE Trans. Automat. Contr., vol. 38, no. 3, pp. 459--462, Mar. 1993.
L. Wang and W. Zhan, Robust disturbance attenuation with stability for linear systems with norm-bounded nonlinear uncertainties, IEEE Trans. Automat. Contr., vol. 41, no. 6, pp. 886--888, June 1996.
K. Tanaka, T. Ikeda, and H. Wang, Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory and linear matrix inequalities, IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1--13, Feb. 1996.
Y. Lin and J. Lo, Robust H2 fuzzy control via dynamic output feedback for discrete-time systems, in Proc. the 12th IEEE Conf. Fuzzy Systems., vol. 2, St. Louis, MO, May 2003, pp. 1384--1388.
Y. Lin and J. Lo, H∞ output feedback control for delay Takagi-Sugeno fuzzy systems, in Proc. 2005 IEEE Int'l Conf. Networking, Sensing and Control, Tucson, AZ, Mar. 2005, pp. 531--536.
J. Geromel and M. de Oliveira, H2 and H∞ robust filtering for convex bounded uncertain system, IEEE Trans. Automat. Contr., vol. 46, no. 1, pp. 100--1 07, Jan. 2001.
C. Tseng and B. Chen, H∞ fuzzy estimation for a class of nonlinear discrete-time dynamic systems, IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2605--2619, Nov. 2001.
R. Mangoubi, Robust estimation and failure detection: a concise treatment, New York, NY: Springer, 1998.
Y. Cao and P. Frank, Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach, IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 200--211, Apr. 2000.
R. Palhares, C. de Souza, and P. Peres, Robust H∞ filtering for uncertain discrete-time state-delayed systems, IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1696--1703, Aug. 2001.
C. de Souza, R. Palhares, and P. Peres, Robust H∞ filtering design for uncertain linear systems with multiple time-varying state delays, IEEE Trans. Signal Processing}, vol. 49, no. 3, pp. 569--576, Mar. 2001.
Y. Lin and J. Lo, Exponential stability of filtering problems for delay fuzzy systems, in Proc. 2004 IEEE Int'l Conf. Networking, Sensing and Control, vol. 2, Taipei, TW, Mar. 2004, pp. 926--931.
Y. Lin and J. Lo, H∞ filter/controller design for discrete-time Takagi-Sugeno fuzzy systems with time delays, in Proc. 2004 Conf. Asia Contr., vol. 3, Melbourne, AU, Dec. 2004, pp. 1516--1522.
Z. Yi and A. Heng, Stability of fuzzy control systems with bounded uncertain delays, IEEE Trans. Fuzzy Syst., vol. 10, no. 1, pp. 92--97, Feb. 2002.
L. Dugard and E. Verriest, Stability and control of time-delay systems, New York, NY: Springer, 1997.
J. Hale and S. Verduyn Lunel, Introduction to functional differential equations, New York, NY: Springer-Verlag, 1993.
Y. Cao and P. Frank, Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy model, Fuzzy Sets and Systems, vol. 124, pp. 213--229, 2001.
H. Lee, J. Park, and Y. Joo, Design of fuzzy-model-based controller for time-varying input-delayed TS fuzzy systems, in Proc. the Amer. Contr. Conf., Pusan, Korea, 2001, pp. 4014--4019.
Y. Cao, Y. Sun, and C. Cheng, Delay-dependent robust stabilization of uncertain systems with multiple state delays, IEEE Trans. Automat. Contr., vol. 43, no. 11, pp. 1608--1612, 1998.
H. Su and J. Chu, Stabilization of a class uncertain time-delay systems containing saturating actuators, Int. J. Systems Science, vol. 30, pp. 1193--1203, 1999.
J. Kim, D. Oh, and H. Park, Guaranteed cost and H∞ filtering for time delay systems, in Proc. the Amer. Contr. Conf., Arlington, VA, 2001, pp. 4014--4019.
Y. Lin and J. Lo, Robust mixed H2/H∞ filtering for discrete-time delay fuzzy systems, Int. J. Systems Science, 2005, to be published.
Y. Lin and J. Lo, H∞ filtering for fast-varying-delay Takagi-Sugeno fuzzy systems, in Proc. 2005 IEEE Int'l Conf. Systems. Man and Cybernetics, Waikoloa, HI, Oct. 2005, accepted.
Y. Cao, Y. Sun, and J. Lam, Delay-dependent robust H∞ control for uncertain systems with time-varying delays, IEE Proc.-Control Theory Appl., vol. 145, no. 3, pp. 338--344, May 1998.
H. Su and J. Chu, Robust H∞ control for linear time-varying uncertain time-delay systems via dynamic output feedback, Int. J. Systems Science, vol. 30, pp. 1093--1107, 1999.
Y. Moon, P. Park, W. Kwon, and Y. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Contr., vol. 74, pp. 1447--1455, 2001.
E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automat. Contr., vol. 47, no. 11, pp. 1931--1937, 2002.
S. Xu, Robust H∞ filtering for a class of discrete-time uncertain nonlinear systems with state delay, IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., vol. 49, no. 12, pp. 1853--1859, Dec. 2002.
Y. Shi and P. Shi, Filtering on uncertainty time-lag systems with sampled measurements, in Proc. of 5th IEEE Int'l Conf. on Signal Processing, WCCC-ICSP 2000, vol. 1, 2000, pp. 155--160.
M. Boutayeb and M. Darouach, Observers for discrete-time systems with multiple delays, IEEE Trans. Automat. Contr., vol. 46, no. 5, pp. 746--750, 2001.
J. Kim, Robust mixed H2/H∞ control of time varying delay systems, Int. J. Systems Science, vol. 32, pp. 1345--1351, 2001.
P. Shi, R. Agarwal, E. Boukas, and S. Shue, Robust H∞ state feedback control of discrete time-delay linear systems with norm-bounded uncertainty, Int. J. Systems Science, vol. 31, pp. 409--415, 2000.
Y. Lin and J. Lo, Robust H∞ filter design for uncertain fuzzy systems with time delays, in Proc. 19th Chinese Soci. Mech. Eng. Conf., vol. 2, Yunlin, TW, Nov. 2002.
Y. Lin and J. Lo, H2 suboptimal fuzzy control via dynamic output feedback for continuous-time systems, in Proc. 7th Conf. Artificial Intelligence and Application, Taichung, TW, Nov. 2002, pp. 83--88.
H. Ying, An analytical study on structure, stability and design of general nonlinear Takagi-Sugeno fuzzy control systems, Automatica, vol. 34, no. 12, pp. 1617--1623, 1998.
B. Chen, C. Tseng, and H. Uang, Mixed H2/H∞ fuzzy output feedbac control design for nonlinear dynamic systems: an LMI approach, IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 249--265, June 2000.
S. Nquang and P. Shi, H∞ fuzzy output feedback control deisgn for nonlinear systems: an LMI approach, IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 331--340, June 2003.
M. Teixeira and S. Zak, Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 133--142, Apr. 1999.
S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, Philadelphia, PA: Society for Industrial and Applies Mathematics, 1994.
K. Gu, Partial solution of LMI in stability problem of time-delay systems, in Proc. of 1999 Decision & Control Conf., Phoenix, AZ, 1999, pp. 227--232.
Y. Lin and J. Lo, Guaranteed cost and H∞ controller design for discrete-time delay fuzzy systems, IEE Proc.-Control Theory Appl., 2004, revised.
K. Goh, L. Turan, M. Safonov, G. Papavassilopoulos, and J. Ly, Biaffine matrix inequality properties and computational methods, in Proc. of 1994 Amer. Contr. Conf., vol. 1, Baltimore, Maryland, 1994, pp. 850--855.
J. Lo and Y. Lin, Robust H∞ fuzzy control via dynamic output feedback for continuous-time systems, in Proc. 2002 Conf. Auto. Contr., vol. 1, Tainan, TW, Mar. 2002, pp. 557--562.
J. Lo and Y. Lin, Robust H∞ fuzzy control via dynamic output feedback for discrete-time systems in, The 2002 IEEE World Congress on Computational Intelligence, vol. 1, Honolulu, HI, May 2002, pp. 633--638.
Y. Lin and J. Lo, Mixed H2/H∞ filtering for discrete-time delay fuzzy systems, in Proc. 10th Conf. on Artificial Intelligence and Applications, Kaohsiung, TW, May 2005, accepted.
Y. Lin and J. Lo, Robust H∞ filter design for discrete-time delay fuzzy systems, in Proc. 20th Chinese Soci. Mech. Eng. Conf., vol. 1, Taipei, TW, Dec. 2003, pp. 297--303.
Y. Lin and J. Lo, Guaranteed cost and H∞ filter design for discrete-time fuzzy systems with time delays, in Proc. Joint Conf on AI, Fuzzy and Grey, vol. 1, Taipei, TW, Nov. 2003, accepted.
Y. Lin and J. Lo, H2/H∞ output feedback controller design for discrete-time fuzzy systems with multiple time delays, IEE Proc.-Control Theory Appl., 2004, submitted.
Y. Lin and J. Lo, Control/Filtering analysis of discrete-time fuzzy systems with time-delays, Int. J. Systems Science, 2004, revised.
J. Tsai, C. Lu, T. Su, and G. Jong, Robust stabilization of uncertain discrete time systems with state delay, in Proc. of 2002 Amer. Contr. Conf., vol. 3, Anchorage, AK, 2002, pp. 2404--2405.
Y. Lin and J. Lo, H∞ and guaranteed cost filtering for time delay fuzzy systems, in Proc. 2003 Conf. Auto. Contr., vol. 1, Taoyuan,TW, Mar. 2003, pp. 67--70.
E. Fridman and U. Shaked, An improved delay-dependent H∞ filtering of linear neutral systems, IEEE Trans. Signal Processing, vol. 52, no. 3, pp. 668--673, 2004.
J. Hale, Theory of functional differential equations, New York, NY: Springer, 1971.
S. Nguang and P. Shi, On designing filters for uncertain sampled-data nonlinear systems, Syst. & Contr. Lett., vol. 41, pp. 305--378, 2000.
Y. Lin and J. Lo, Robust H∞ output feedback control for fast-varying delay fuzzy systems: an LMI approach, IEEE Trans. Syst., Man, Cybern. B: Cybernetics, 2005, submitted.
Y. Lin and J. Lo, Exponentially control/filtering for time-delay fuzzy systems, IEE Proc.-Control Theory Appl., 2005, submitted.
K. Lee, J. Kim, E. Jeung, and H. Park, Output feedback robust H∞ of uncertain fuzzy dynamic systems with time-varying delay, IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657--664, Dec. 2000.
E. Fridman and U. Shaked, A new H∞ filter design for linear time delay systems, IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2839--2843, Nov. 2001.
J. O'Reilly, Observers for linear systems, New York, NY: Academic Press, 1983.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2005-11-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明