博碩士論文 88323108 詳細資訊


姓名 高銘儀(Ming-Yi Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用3D區域成長法於腦部磁共振影像之分割
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 結構式磁共振醫學影像是一種空間解析度高的影像,對軟組織如腦組織的灰值、白值及腦脊髓液具有良好的影像對比,可以利用腦組織的灰值、白值、腦脊髓液的影像亮度特徵不同,分割出腦部組織的區域。
本研究是以數位式醫學影像的T1WI磁共振影像為處理、研究的影像,以區域成長法自動將單一頻譜的磁共振影像的腦組織與非腦組織分離開來。主要分割腦部區域的內容為兩部分,一為區域成長法的前處理,以圈選腦部組織經區域成長法與膨脹處理得到概略的腦部區域,求影像腦組織的亮度平均值與亮度分佈範圍作為金字塔區域成長法的成長參數,一為金字塔式區域成長法在層層降低解析度後,再以區域成長法求出的腦部區域作為逐層恢復解析度區域成長法的成長限制區域方式自動求得腦部組織。而分割出的影像可以體積顯示法(Volume Rendering)顯示三維的腦組織影像,對醫生診斷、手術前路徑規劃、腦科學研究皆有很大的幫助。
關鍵字(中) ★ 磁共振影像
★ 腦部
★ 影像分割
★ 3D區域成長法
關鍵字(英)
論文目次 目錄
摘要 I
目錄 II
圖索引 IV
表索引 VI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究方法 4
1.4 論文介紹 4
第二章 影像簡介 6
2.1 數位醫學影像 6
2.1.1 DICOM的格式概敘 7
2.1.2 DICOM的資料元素格式介紹 8
2.1.3 影像的擷取 10
2.2 磁共震影像簡介 12
2.2.1 磁共振 12
2.2.2 磁共振影像 13
2.2.3 磁共振影像討論 18
第三章 3D區域成長法 19
3.1 3D區域成長法流程 19
3.2 圈選腦部區域 21
3.3 概略的腦部區域 22
3.4 腦組織的亮度平均值及分佈範圍 24
3.5 金字塔式區域成長法 24
3.5.1 降低解析度 24
3.5.2 區域成長法 26
3.5.3 恢復解析度 27
3.5.4 區域成長的成長法則 29
第四章 實驗與結果討論 31
4.1 影像分析 31
4.2 金字塔式區域成長法之前處理 32
4.3 金字塔式區域成長法結果之討論 34
4.4 自動找成長參數失敗的討論 42
第五章 結論與未來展望 45
參考文獻 47
參考文獻 [1]Atkins, M. and Mackiewich, B., “Fully Automatic Segmentation of the Brain in MRI”, IEEE Transactions on Medical Imaging, Vol. 17, No. 1, Feb. 1998, P98-107
[2]Dougherty, E., “Random Processes for Image and Signal Processing ”, IEEE Press, 1998, P510-519.
[3]Germond, L., Dojet, M., Taylor, C., et al., “A Cooperative Framework for Segmentation of MRI Brain Scans”, Artificial Intelligence in Medicine, 2000, P77-94.
[4]Jang, D., Lee, D., and Kim, S., “Contour Detection of Hippocampus Using Dynamic Contour Model and Region Growing”, 19th Internation Conference, IEEE/EMBS, Chicago, lL. USA., Oct. 30-Nov. 2, 1997 , P763-766.
[5]Justice, R. and Stokely, E., “3-D Segmentation of MR Brain Images Using Seeded Region Growing”,18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society ,Amsterdam 1996, P1083-1084.
[6]Lao, Z., Shen, D., and Davatzikos, C., “Statical Shape Model For Automatic Skull-Stripping of Brain Images”, http://www.rad.upenn. edu/~dgshen/papers/Lao_ISBI2002.pdf
[7]Leemput, K., Maes, F., Vandermeulen, D., et al., “Automated Model-Based Tissue Classification of MR Images of the Brain”,IEEE Transactions of Medical Imaging, Vol. 18, No. 10, Oct. 1999, P897-908.
[8]Lievin, M., Hanssen, N., Zerfass, P., et al., “3D Markov Random Fields and Region Growing for Interactive Segmentation of MR Data”, 4th International Conference on Medical Image Computing and Computer-Assisted Intervention , Utrecht, Oct. 2001,P14-17.
[9]National Electrical Manufacturers Association, “Digital Imaging and Communications in Medicine”, Rosslyn, Virginia 22209 USA, 2003. PS 3.3, PS 3.5, PS 3.6, PS 3.10.
[10]Oakes, T., Koger, J., and Davidson, R., “Automated Whole-Brain Segmentation”, the Human Brain Mapping Conference, Dusseldorf, June. 1999, http://tezpur.keck.waisman.wisc.edu/~oakes /brain_segment_HBM_poster_all.pdf
[11]Rajapakse, J., Giedd, J., and Rapoport, J., “Statistical Approach to Segmentation of Single-Channel Cerebral MR Images”, IEEE Transacations on Medical Imaging, Vol. 16, No. 2, APR. 1997, P176-186.
[12]Ruan, S. and Bloyet, D., “MRF models and multifractal analysis for MRI segmentation”, 6th. Int. Conf. Signal Processing, Vol. 2, Bejin, China, Aug. 2000,P1259-1252.
[13]Schroder, M., Rehrauer, H., Seidel, K., et al. , “Spatial Information Retrieval from Remote-Sensing Images─Part II: Gibbs─Markov Random Fields”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, Sep. 1998, P1446-1445.
[14]Smith, S., “ BET: Brain Extraction Tool” ,FMRIB technical Report TR00SMS2b, http://www.fmrib.ox.ac.uk/analysis/research/ bet/bet/bet.html
[15]Tao, Y., Grosky, W., Zamorano, L., et al., “Segmentation and Representation of Lesions in the MRI Brain Images”, Proccedings of SPIE Medical Imaging , Feb. 1999, P930-939.
[16]Weisenseel, R., Karl, W., Castanon, D., et al., “MRF-based Algorithms for Segmentation of SAR Images”, Proceedings of the 1998 IEEE International Conference on Image Processing, Chicago, Illinois, Vol. 3, Oct. 1998, P770-774. http://acadia.bu.edu/lorax/talks/ ICIP98.pdf
[17]Woodward, P., “MRI for Technologists”, McGraw-Hill, Nov. 2000, P13-39, P67-91
[18]Wells, W., Grimson, W., Kikinis, R., et al., “Adaptive Segmentation of MRI Data”, IEEE Transactions on Medical Imaging, Vol. 15, No. 4, Aug. 1996, P429-442.
[19]Xu, C., Yezzi, A., and Prince, J., “On the Relationship between Parametric and Geometric Active Contours”, 34th Asilomar conference on Signals, Systems, and Computers, Oct. 2000, P483-489.
[20]Zhang, Y., Brady, M., and Smith, S., “Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm”, IEEE Transactions on Medical Imaging, Vol. 20, No. 1, Jan. 2001,P45-57.
[21]“Markov Random Fields and Gibbs Distributions”, http://research. microsoft.com/~szli/MRF_Book/Chapter_1/node9.html
[22]胡明一 、陳懿慧、謝慧瑛等人編譯, “人體解剖學”,藝軒圖書出版,民國88年,P258-326.
[23]莊克士, “ 醫學影像物理學”, 合記圖書出版社, 民國87年10月
[24]曾文毅, “磁振造影基本原理”, P1-37, http://ceiba.cc.ntu.edu.tw/ mbp/course1.html
[25]楊武智, “影像處理與辨認”, 全華科技圖書, 民國90年3月, P39-61,86-113.
指導教授 曾清秀(Ching-Shiow Teseng) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡