博碩士論文 88326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.149.252.37
姓名 范姜仁茂(Jen-Mao Fanchiang )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 預臭氧程序提升綜合性工業廢水生物可分解性之研究
(Study of Biodegradability Enhancement for Industrial Wastewater by Preozonation Process)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 下水污泥灰渣應用於銅離子去除之初步探討
★ 纖維材料對於污泥灰渣砂漿工程性質之影響★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究
★ 下水污泥灰渣特性及應用於水泥 砂漿之研究★ 以Microtox檢測方法評估實際廢水生物毒性之研究
★ 化學置換程序回收氯化銅蝕刻廢液之研究★ 零價鐵反應牆外加電壓去除水中三氯乙烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以預臭氧程序(preozonation process)處理中壢工業區綜合性工業廢水,並探討臭氧劑量、預臭氧反應時間與初始pH值等操作因子,對廢水水質之生物可分解性的影響。此外,並就廢水的BOD曲線、COD組成及分子量分佈等,評估預臭氧程序提升廢水生物可分解性的成效。同時,本研究亦探討預臭氧處理程序對原廢水之真色色度的去除效果,並就臭氧脫色後之水質的生物可分解性,加以進一步的討論。
研究結果顯示,原廢水中約有50%的有機物為生物難分解有機物(BOD5/COD約為0.27),並含高濃度硫酸鹽(236mg/L)與氯離子(764mg/L)。預臭氧氧化處理結果顯示,臭氧劑量為116.2mg/min時,廢水COD會有明顯的礦化現象,使得COD減少而BOD5增加,此有助於提升廢水的生物可分解性。另外,在120分鐘的預臭氧反應時間內,廢水之BOD5/COD比值均可提升,但是最適的反應時間與BOD5/COD比值增加的原因,需視水質pH而定。其中,在中性水質情況下,BOD5/COD增加的主要原因,係臭氧產生局部氧化反應(partial oxidaton),轉化難分解有機物,成為生物可分解有機物;在酸性水質條件下,BOD5/COD提升原因,除臭氧局部氧化反應外,尚發生COD礦化反應;至於在鹼性水質條件下,則發現反應初期,廢水中可生物分解的有機物(BOD5)會有礦化的現象,故不利生物可分解性的提升,但反應時間延長至120分鐘後,預臭氧化仍可破壞難分解有機物,增加水質的生物可分解性。
此外,藉由廢水之BOD曲線與COD組成的評估,獲知在中性水質、低臭氧劑量條件下,預臭氧反應以礦化顆粒性難分解有機物為主,且提高臭氧劑量後,則可使其形成溶解性可分解有機物。在酸性水質條件下,臭氧可使難分解有機物同時轉化成顆粒性與溶解性可分解有機物。至於在鹼性水質條件下,廢水之有機物組成的變化,則與在中性水質條件時相似。又根據分子量分佈的分析結果發現,廢水生物可分解性提高的原因,主要與大分子量(約500kD)之DOC,被臭氧破壞成小分子量有機物有關。
預臭氧脫色的結果指出,預臭氧反應在各不同初始pH情況下,均能有效地破壞色度,當臭氧劑量與預臭氧反應時間,分別大於42mg/min與60 分鐘時,真色色度去除率,均可達到90%以上,且值得注意的是,隨著色度去除率的增加,廢水的生物可分解性,亦隨之提升,此顯示廢水中的色度,即為難分解有機物的來源之一。
摘要(英) The objectives of this study are aimed to investigate the performance of biodegradability enhancement in an industrial wastewater by preozonation process. Effect of ozone dosage, reaction time of preozonation and initial pH was studied. The biodegradability of wastewater was evaluated by BOD curve, COD fractionation and dissolved organic carbon molecular weight (DOC MW) distribution. This study also investigated the color removal in this wastewater by preozonation process and corresponding variation in biodegradability.
Experimental results showed that this industrial wastewater contains 50% biorefracotry organic compounds and the value of BOD5/COD was 0.27. Moreover, the average concentration of sulfate and chloride are as high as 236mg/L and 764mg/L respectively. The biodegradability of wastewater could be enhanced apparently with 116.2 mg/min of ozone dosage due to the mineralization of COD and the increase of BOD5. However, within 120min of preozonation time, biodegradability enhancement in this wastewater was also observed, but the optimal reaction time of preozonation and the increase of BOD5/COD were depended on the initial pH of wastewater. The value of BOD5/COD increased at 7.5 of initial pH as a result of the partial oxidations of biorefractory organic compounds and the generation of biodegradable organic compounds. When the initial pH was controlled at 5.0, the phenomena of partial oxidation and COD mineralization occurred simultaneously. In addition, although the BOD5 of wastewater was mineralized in the initial preozonation time at 9.0 of initial pH, but the biodegradability of wastewater could be eventually enhanced as the reaction time of preozonation approached 120 minutes.
The analysis of COD fractionation and BOD curve showed the particulate biorefractory organic compounds were mineralized at low ozone dosage when initial pH was at 7.5 and 9.0 respectively, but could be converted to soluble biodegradable organic compounds with the increase of ozone dosage. Also, the biorefractory organic compounds were converted to particulate and soluble biodegradable organic compounds when initial pH was maintained at 5.0. Additionally, biodegradability enhancement in this wastewater was primarily resulted from the conversion of high MW DOC (>500kD) to low MW DOC by means of DOC MW distribution analysis.
Results also revealed that color of wastewater could be effectively removed by preozonation, and the color removal could be over 90% when ozone dosage and preozonation time was 42.0mg/min and 60min respectively. In particular, biodegradability enhancement in this wastewater was obtained along with the color removal. This implied that the color of this wastewater was one source of biorefractory organic compounds.
關鍵字(中) ★ 分子量分佈
★  生物可分解性
★  綜合性工業廢水
★  脫色
★  預臭氧程序
關鍵字(英) ★ industrial wastewater
★  preozonation process
論文目次 目錄 I
圖目錄 IV
表目錄 VI
第一章前言..................................................1
1-1研究緣起..............................................1
1-2研究目的與內容........................................2
第二章文獻回顧..............................................4
2-1臭氧反應之作用機制....................................4
2-1-1臭氧之基本性質...................................4
2-1-2臭氧氧化之作用機制...............................4
2-1-3影響廢污水臭氧氧化之因子.........................7
2-2生物分解性之定義及測定方式............................9
2-2-1生物分解性之定義.................................9
2-2-2生物可分解性之測定方式..........................10
2-3預臭氧程序提升工業廢水生物可分解性的原理.............14
2-4預臭氧程序提升工業廢水生物可分解性的研究現況........16
2-4-1臭氧劑量之影響..................................16
2-4-2預臭氧反應時間之影響............................18
2-4-3 pH之影響.......................................20
2-5預臭氧程序對難分解廢水色度之脫色效果.................21
2-6預臭氧程序應用於實廠的現況...........................23
第三章實驗設備、材料與方法.................................28
3-1研究流程.............................................28
3-2 實驗裝置.............................................32
3-2-1預臭氧實驗裝置..................................32
3-2-2板框過濾實驗裝置................................34
3-3實驗設計與操作方法...................................36
3-3-1實驗條件........................................36
3-3-2實驗操作方法....................................37
3-4實驗設備.............................................40
3-5實驗材料.............................................41
3-6分析方法.............................................43
第四章結果與討論...........................................48
4-1原廢水水質特性與生物可分解性.........................48
4-1-1原廢水水質特性..................................48
4-1-2原廢水生物可分解性評估..........................53
4-1-3綜合討論........................................59
4-2預臭氧化對生物可分解性之影響.........................60
4-2-1背景實驗........................................60
4-2-2臭氧劑量之影響..................................65
4-2-3預臭氧反應時間之影響............................75
4-2-4 pH之影響.......................................83
4-2-5綜合討論........................................92
4-3預臭氧化提升生物可分解性成效之評估..................101
4-3-1 BOD曲線.......................................101
4-3-2 COD組成.......................................105
4-3-3有機物分子量分佈...............................108
4-3-4綜合討論.......................................111
4-4預臭氧化脫色效果之評估..............................115
4-4-1預臭氧脫色效果.................................115
4-4-2臭氧脫色效果對生物可分解性之影響...............121
第五章結論與建議..........................................125
5-1結論................................................125
5-2建議................................................127
參考文獻....................................................129
附錄ACOD組成之理論.....................................附A-1
附錄B實驗原始數據......................................附B-1
附錄C預臭氧脫色效果....................................附C-1
參考文獻 Adams, C. D., P. A. Scanlan, and N. D. Secrist, “Oxidation and Biodegradability Enhancement of 1,4-Dioxane Using Hydrogen Peroxide and Ozone,” Environmental Science Technology, 28(11), pp.1812-1818(1994).
Adams,C. D., R. A. Cozzens, and B. J. Kim, “Effect of Ozonation on the Biodegradability of Substituted Phenols,” Water Research, 31(10), pp. 2655-2663(1997).
Baig, S. and P. A. Liechti, “Ozone treatment for biorefractory COD removal,” Water Science and Technology, 43(2), pp. 197-204(2001).
Balcioglu, I. A. and I. Arslan, “Partial oxidation of reactive dyestuffs and synthetic textile dye-bath by the O3 and O3/H2O2 processes,” Water Science and Technology, 43(2), pp. 221-228(2001).
Barker, D. J. and D. C. Stuckey, “A Review of Soluble Microbial Products in Wastewater Treatment Systems,” Water Research, 33(14), pp. 3063-3082(1999).
Beltran, F. J., J. F. G. Araya, and P. M. Alvarez, “pH Sequential Ozonation of Domestic and Wine-Distillery Wastewaters,” Water Research, 35(4), pp. 929-936(2001).
Beltran-Heredia, J., J. Torregrosa, J. R. Dominguez, and J. Garcia, “Aerobic Biological Treatment of Black Table Olive Washing Wastewater: Effect of an Ozone,” Process Biochemistry, 35(10), pp. 1183-1190(2000).
Birch, R. R. and R. J. Fletcher, “The Application of Dissolved Inorganic Carbon Measurements to the Study of Aerobic Biodegradability,” Chemosphere, 23(7), pp. 855-872(1991).
Brunet, R., M. M. Bourbigot, and M. Dore, “The Influence of the Ozonation Dosage on the Structure and Biodegradability of Pollutants in Water, and Its Effect on Activated Carbon Filtration,” Ozone Science and Engineering, 4(1), pp. 15-32(1982).
Cokgor, E. U., S. Sozen, D. Orhon, and M. Henze, “Respirometric Analysis of Activated Sludge Behaviour-I. Assessment of the Readily Biodegradable Substrate,” Water Research, 32(2), pp. 461-475(1998).
Eckenfelder, W. W., Industrial Water Pollution Control, 2nd Ed, McGraw-Hill, Singapore(1989).
Gilbert, E., “Biodegradability of Ozonation Products as a Function of COD and DOC Elimination by Example of Substituted Aromatic Substances,” Water Research, 21(10), pp. 1273-1278(1987).
Gilbert, E., “Investigations on the Changes of Biological Degradability of Single Substances Induced by Ozonation,” Ozone Science and Engineering, 5(1), pp. 137-149(1983).
Gunten, U. V., A. Bruchet, and E. Costentin, “Bromate Formation in Advanced Oxidation Processes,” Journal American Water Works Association, 88(6), pp. 53-65(1996).
Haberl, R., W. Urban, P. Gehringer, and W. Szinovatz, “Treatment of Pulp-Bleaching Effluents by Activated Sludge, Precipitation, Ozonation and Irradiation,” Water Science and Technology, 24(3/4), pp. 229-239(1991).
Helble, A., W. Schlayer, P. A. Liechti, R. Jenny, and C. H. Mobius, “Advanced Effluect Treatment in the Pulp and Paper Industry with a Combined Process of Ozonation and Fixed Bed Biofilm Reactors,” Water Science and Technology, 40(11/12), pp. 343-350(1999).
Hesse, S., G. Kleiser, and F. H. Frimmel, “Characterization of Refractory Organic Substances (ROS) in Water Tretament,” Water Science and Technology, 40(9), pp. 1-7(1999).
Hoigne, J. and H. Bader, “Ozonation of water:kinetics of oxidation of ammonia by ozone and hydroxyl radicals,” Environmental Science and Technology, 12(1), pp. 79-84(1978).
Jochimsen, J. C. and M. J. Jekel, “Partial Oxidation Effect during the Combined Oxidative and Biological Treatment of Separated Streams of Tannery Wastewater,” Water Science and Technology, 35(4), pp. 337-345(1997).
Laari, A., S. Korhonen, T. Tuhkanen, S. Verenich, and J. Kallas, “Ozonation and Wet Oxidation in the Treatment of Thermomechanical Pulp(TMP) Circulation Waters,” Water Science and Technology, 40(11/12), pp. 51-58(1999).
Lambert, S. D. and N. J. D. Graham, “Removal of Non-Specific Dissolved Organic Matter from Upland Potable Water Supplies-II. Ozonation and Adsorption,” Water Research, 29(10), pp. 2427-2433(1995).
Langlais, B., B. Cucurou, Y. Aurelle, B. Capdeville, and H. Roques, “Improvement of a Biological Treatment by Prior Ozonation,” Ozone Science and Engineering, 11(1), pp. 155-168(1989).
Ledakowicz, S. and M. Gonera, “Optimisation of Oxidants Dose for Combined Chemical and Biological Treatment of Textile Wastewater,” Water Research, 33(11), pp. 2511-2516(1999).
Levine, A. D., G. Tchobanoglous, and T. Asano, “Characterization of the Size Distribution of Contaminants in Wastewater: Treatment and Reuse Implications,” Journal of Water Pollution Control Federation, 57(7), pp. 805-816(1985).
Lin, C. K., T. Y. Tsai, J. C. Liu, and M. C. Chen, “Enhanced Biodegradation of Petrochemical Wastewater Using Ozonation and BAC Advanced Treatment System,” Water Research, 35(3), pp. 699-704(2001).
Logan, B. E. and G. A. Wagenseller, “Molecular Size Distributions of Dissolved Organic Matter in Wastewater Transformed by Treatment in a Full-Scale Trickling Filter,” Water Environment Research, 72(3), pp. 277-281(2000).
Lopez, A., G. Ricco, G. Mascolo, G. Tiravanti, A. C. D. Pinto, and R. Passino, “Biodegradability Enhancement of Refractory Pollutants by Ozonation: a Laboratory Investigation on an Azo-Dyez Intermediate,” Water Science and Technology, 38(4/5), pp. 239-245(1998).
Mao, H. and D. W. Smith, “A Mechanistic Model for Assessing Biodegradability of Complex Wastewater,” Water Research, 29(8), pp. 1957-1975(1995).
Marco, A., S. Esplugas, and G. Saum, “How and Why Combine Chemical and Biological Processes for Wastewater Treatment,” Water Science and Technology, 35(4), pp. 321-327(1997).
Mobius, C. H. and M. Cordes-Tolle, “Enhanced Biodegradability by Oxidative and Radiative Wastewater Treatment,” Water Science and Technology, 35(2/3), pp.245-250(1997).
Nyholm, N., “The European System of Standardized Legal Tests for Assessing the Biodigradability of Chemicals,” Environmental Toxicology and Chemistry, 10(10), pp. 1237-1246(1991).
Orhon, D. and N. Artan, Modelling of Activated Sludge Systems, Technomic Publishing Company, Lancaster, pp. 540-544(1994).
Orhon, D., S. Sozen, E. U. Cokgor, and E. A. Genceli, “The Effect of Setting on the Kinetics and Design of Activated Sludge for Tannery Wastewater,” Water Sciecne and Technology, 38(4/5), pp.355-362(1998).
Perkowski, J., L. Kos, and S. Ledakowicz, “Application of Ozone in Textile Wastewater Treatment,” Ozone Science and Engineering, 18(1), pp. 73-85(1996).
Pignatello, J. J., “Dark and Photoassisted Fe3+-Catalyaed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide,” Environmental Science and Technology, 26(5), pp. 944-951(1992).
Prat, C., M. Vicente, S. Esplugas, “Ozonation of Bleaching Waters of the Paper Industry,” Water Research, 23(1), pp. 51-55(1989).
Qian, Y., Y. Wen, and H. Zhang, “Efficacy of Pre-treatment Methods in the Activated Sludge Removal of Refractory Compounds in Coke-Plant Wastewater,” Water Research, 28(3), pp. 701-707(1994).
Ribas, F., J. Frias, J. M. Huguet, and F. Lucena, “Efficiency of Various Water Treatment Processes in the Removal of Biodegradable and Refractory Organic Matter,” Water Research, 31(3), pp. 639-649(1997).
Rice, R. G., “Application of Ozone for Industrial Wastewater Treatment─A Review,” Ozone Science and Engineering, 18(6), pp. 477-515(1997).
Roy-Arcand, L. R. and F. S. Archibald, “Ozonation as a Treatment for Mechanical and Chemical Pulp Mill Effluents,” Ozone Science and Engineering, 18(4), pp. 363-384(1996).
Scott, J. P. and D. F. Ollis, “Integration of Chemical and Biological Oxidation Processes for Water Treatment: Review and Recommendations,” Environmental Progress, 14(2), pp. 88-103(1995).
Siddiqui, M. S., G. L. Amy, and B. D. Murphy, “Ozone Enhanced Removal of Natural Organic Matter from Drinking Water Sources,” Water Research, 31(12), pp. 3098-3106(1997).
Sonntag, C. V., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann, and H. P. Schuchmann, “The Fate of Peroxyl Radicals in Aqueous Solution,” Water Science and Technology, 35(4), pp. 9-15(1997).
Stover, E. L., L. W. Wang, and D. R. Medley, “Ozone Assisted Biological Treatment of Industrial Wastewaters Containing Biorefractory Compounds,” Ozone Science and Engineering, 4(1), pp. 177-194(1982).
Stowell, J. P., J. N. Jensen, and A. S. Weber, “Sequential Chemical/Biological Oxidation of 2-Chlorophenol,” Water Science and Technology, 26(9/11), pp. 2085-2087(1992).
Strotmann, U. J., H. Schwarz, and U. Pagga, “The Combined CO2/DOC Test-a New Method to Determine the Biodegradability of Organic Compounds,” Chemosphere, 30(3), pp. 525-538(1995).
Suzuki, J., K. Hukushima, and S. Suzuki, “Effect of Ozone Treatment upon Biodegradability of Water-Soluble Polymers,” Environmental Science and Technology, 12(10), pp. 1180-1183(1978).
Westerhoff, P., R. Song, G. Amy, and R. Minear, “Applications of Ozone Decomposition Models,” Ozone Science and Engineering, 19(1), pp.55-73(1997).
Win, Y. Y., M. U. Kumke, C. H. Specht, A. J. Schindelin, G. Kolliopoulos, G. Ohlenbusch, G. Kleiser, S. Hesse, and F. H. Frimmel, “Influence of Oxidation of Dissolved Organic Matter (DOM) on Subsequent Water Treatment Processes,” Water Research, 34(7), pp. 2098-2104(2000).
Wu, J. and T. Wang, “Ozonation of Aqueous Azo Dye in a Semi-Batch Reactor,” Water Research, 35(4), pp. 1093-1099(2001).
Yeber, M. C., J. Rodriguez, J. Freer, J. Baeza, and N. Duran, “Advance Oxidation of a Pulp Mill Bleaching Wastewater,” Chemosphere, 39(10), pp. 1679-1688(1999).
Yu, G., W. Zhu, and Z. Yang, “Pretreatment and Biodegradability Enhancement of DSD Acid Manufacturing Wastewater,” Chemosphere, 37(3), pp. 487-494(1998).
王建文,「純氧活性污泥法處理綜合性工業廢水之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。

呂穎彬、黃文輝、何秋月、何錦堂、蔡振球,「生物難分解有機污染物處理技術評估」,工業技術研究院化學工業研究所,新竹,第38-54頁(1994)。
卓伯全、張鎮南、許文龍、黃香賓珽、潘子欽,「以預臭氧程序促進含高有機氮廢水氨化及提升生物可分解性之研究」,第二十二屆廢水處理技術研討會論文集,第595-602頁,台北(1997)。
胡思聰,「臭氧化預處理之氯酚化合物廢水對於活性污泥系統處理效應之影響」,博士論文,台灣大學環境工程研究所,台北(1994)。

祝德杭,「UV/H2O2系統分解水中氯苯類污染物與減毒效果之研究」,碩士論文,中央大學環境工程研究所,中壢(1999)。

張秋萍、盧明俊、陳重男,「結合化學氧化及生物氧化程序處理工業廢水」,工業污染防治,第六十九期,第61-76頁(1999)。
陳昌佑、蔡元正、謝瑜芬、周鴻盛、盧至人,「臭氧對天然有機物的生物分解影響之研究」,第二十四屆廢水處理技術研討會論文集,第193-198頁,新竹(1999)。
楊萬發,「染整工廠廢水污染防治」,工業污染防治技術手冊,第二冊,第26-44頁(1994)。
劉欣穎,「以臭氧降低優養化水源消毒副產物生成之初探」,碩士論文,東海大學環境科學研究所,台中(1996)。

歐陽嶠暉,下水道工程學(水環境,水再生工程學),長松文化公司,台北(2000)。
駱尚廉、楊萬發、曾四恭、吳先琪、林正芳、李公哲、曾迪華、張祖恩、陳炳煌、蔡俊鴻,「環境保護辭典」,中華民國環境工程學會,第53頁,台北(1997)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2001-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明