博碩士論文 88326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.172.234.236
姓名 吳非霖(Fei-Ling Wu )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
(NOx Removal via Dielectric Barrier Discharges for small Oil-Fired Boiler Exhaust)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ BaTiO3填充床電漿反應器破壞CF4之初步研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為因應民國91年即將實施的加嚴氮氧化物排放標準,工業界目前大多採用燃燒後處理技術(Post Combustion Technology)對NOx排放量進行控制,最常見的應用技術包括有SCR與SNCR等。有鑑於此二法於實際應用上有其使用限制,並可能引發二次污染,因此尋求創新技術改善傳統技術的缺失,同時提升De-NOx處理效率,已成為各國學術界及工業界共同努力的目標。本研究首先利用介電質放電技術進行小型重油鍋爐氮氧化物排放之模場規模(pilot scale)初步控制試驗,再經由實驗室模擬廢氣組成進行實驗室規模之放電研究,探討反應器之介電材質、外電極材質與型式、反應器管徑、內電極規格等各參數對氮氧化物去除率與能量效率之影響,以尋求介電質反應器最佳控制參數。研究中並應用介電質放電技術與濕式法控制氮氧化物時優缺點互補的特性,將兩技術結合以有效提升氮氧化物去除效率,最後並針對此一技術進行初步成本分析,並評估此技術控制氮氧化物之可行性。實廠測試結果顯示,NO、NOx去除率隨供給電壓、供電頻率及乙烯添加劑量增加而上升。當鍋爐操作在小火燃燒條件下,有較佳之NO與NOx去除效率,其中NO去除率最佳可達81%,而最佳NOx去除率只達37%。在多組反應器參數之研究結果中,以石英介電材質、銅片外電極、反應器管外徑2 cm及直徑0.64 cm不銹鋼棒內電極之反應器具有最佳之NO去除效率與能量效率。當介電質放電系統之供給電壓為18 kV、放電區長度20 cm、氣體流量2 lpm、氣體組成為[NO]/[O2]/[CO2]/[H2O] = 250 ppmv:2.5 %:10 %:3.0 %、後端串聯0.1 M之Na2SO3或Na2S洗滌設備時,NOx之去除率分別可達90%與93%。本研究結果證實,以介電質放電系統結合濕式洗滌法去除氮氧化物之技術確實可行,深具發展潛力。
摘要(英) Stricter NOx emission standards have been issued worldwide in recent years because NOx not only leads to the formation of acid deposition and photochemical smog, but also imposes adverse effects on human health, vegetation, and materials. SCR and SNCR are the most common post combustion techniques for removing NOx from stationary sources. However, theses technologies leave some unavoidable disadvantages, such as poisoning of catalysts or narrow temperature windows. In order to improve those limitations, developing more effective techniques for controlling NOx emission has become an important issue in the research and industrial field.
In this study, the pilot-scale dielectric barrier discharges (DBD) process were firstly investigated to remove NOx from industrial flue gas of a small oil-fired boiler. Then, we investigated the laboratory-scale DBD reactor combining with wet scrubber for NO and NOx removal. The effects of operational parameters including dielectric material, outer electrode material, reactor diameter, inner electrode type, and scrubber liquors on NOx removal efficiency are experimentally investigated. Experimental results indicate that the DBD reactor with quartz dielectric material, copper film outer electrode, 2 cm outer diameter, and 0.64 cm diameter of stainless steel inner electrode is of the most NO removal efficiency. When DBD combined with Na2SO3 and Na2S solutions, more than 90% of NO and NOx removal efficiency were achieved for the gas stream containing [NO]/[O2]/[CO2]/[H2O] = 250 ppmv:2.5%:10%:3.0%. Experimental results indicated that combining DBD with wet scrubbing to remove NOx was technically feasible.
關鍵字(中) ★ 介電質放電
★  氮氧化物控制
★  濕式法
★  鍋爐
關鍵字(英) ★ Dielectric Barrier Discharges
★  NOx Control Technologies
論文目次 目 錄
摘要
目錄 …………………………………………………………………I
表目錄.……………………………………………………………….IV
圖目錄.………………………………………………………………..V
第一章 前 言1
1-1 研究緣起1
1-2 研究目的與內容3
第二章 文獻回顧4
2-1 氮氧化物的特性、來源與危害4
2-1-1氮氧化物的基本特性4
2-1-2氮氧化物的來源6
2-1-3 氮氧化物對健康與環境造成的衝擊7
2-2 氮氧化物生成機制8
2-2-1 熱生成機制8
2-2-2 燃料生成機制12
2-2-3 瞬時生成機制14
2-3 NOx控制原理與應用技術16
2-3-1 燃燒前處理16
2-3-2 燃燒程序修正16
2-3-3 燃燒後處理24
2-4 電漿生成原理、特性、種類及應用31
2-4-1 電漿生成原理31
2-4-2 電漿特性34
2-4-3 電漿種類35
2-4-4 電漿技術之應用36
2-5 電漿技術去除NOx之回顧37
2-5-1 電子束法37
2-5-2 電暈放電法38
2-5-3 介電質放電法40
2-5-3-1 添加劑對於電漿技術去除NOx 之影響43
2-5-3-2 氮氧化物在介電質放電程序中之轉化反應45
2-5-3-3 介電質放電法去除氮氧化物之發展趨勢53
第三章 研究方法及設備54
3-1 研究方法54
3-1-1 研究流程與規劃54
3-1-2 操作參數之選定59
3-1-3 轉化效率之表示式61
3-2 實驗設備61
3-2-1 氣體供應系統61
3-2-2 操作參數控制系統64
3-2-3 介電質放電系統66
3-2-4 反應物及終產物之分析系統68
第四章 結果與討論70
4-1 實廠DBD 去除氮氧化物試驗70
4-1-1乙烯劑量與鍋爐操作條件對氮氧化物去除率之影響70
4-1-2 放電頻率對氮氧化物去除率之影響76
4-1-3 乙烯劑量對氮氧化物能量效率之影響79
4-2 實驗室DBD去除氮氧化物試驗81
4-2-1 玻璃與石英介電質對去除率與能量效率之影響81
4-2-2 外電極對去除率與能量效率之影響85
4-2-3 反應器管徑對去除率與能量效率之影響87
4-2-4 內電極對去除率與能量效率之影響93
4-2-5 氣體濃度組成對氮氧化物去除率與能量效率之影響97
4-2-6 氣體流量對一氧化氮去除率與能量效率之影響104
4-2-7 放電區長度對一氧化氮去除率與能量效率之影響107
4-2-8 相同氣體停留時間下,多管並聯短放電區與單管長放電區型式對一氧化氮去除率與能量效率之影響111
4-3 電漿結合濕式法115
4-3-1 單純濕式法115
4-3-2 電漿結合濕式法119
4-3-3 產物分析123
第五章 結論與建議132
5-1 結論132
5-2 建議135
參考文獻136
參考文獻 Alzueta, M. U., Glarborg, P., and Johansen, K. D., (1997) “Low Temperature Interactions Between Hydrocarbons and Nitric Oxide: An Experimental Study”, Combust. Flame, Vol.109, pp. 25-36.
Bagwell, F. A., Rosenthal, K. E., Teixeira, D. P., Southern California Edison Co., and Breen, B.P., (1971) “Utility boiler operating modes for reduced nitric oxide emissions,” 64th Annual Meeting of the Air Pollution Control Assn., No. 71-11, Atlantic City, NJ, (June-July).
Bartoszek, F. E., Vasquez, L. R., He, W., and Chang, J. S., (1998) “Removal of NOx from Flue Gas by Reburning with Plasma Activated Natural Gas: Review and Economics”, Combust. Sci. and Tech., 1998, Vol. 133, pp. 161-190.
Centi, G., Perathoner, S., and Olio, L., (1996) “Modification of the Surface Reactivity of Cu-MFI during Chemisorption and Transformation of the Reagents in the Selective Reduction of NO with Propane and O2,” Appl. Catal., B, Vol. 7.
Chang, M. B., and Cheng, C. F., (1997a) “Low Temperature SNCR Process for NOx Control,” Sci. Total Environ., Vol. 198, pp. 73-78.
Chang, M. B., and Cheng, C. F., (1997b) “Plasma-Assisted Removal of NO from Gas Streams via Ammonia Injection,” Environ. Eng. Sci., Vol. 14, No. 4, pp. 193-200.
Chang, M. B., Kushner, M. J., and Rood, M. J., (1992) “Gas-phase Removal of NO from Gas Streams via Dielectric Barrier Discharge,” Environ. Sci. Technol., Vol. 26, pp. 777-781.
Chang, M. B., Kushner, M. J., and Rood, M. J., (1992) “Removal of SO2 and the Simultaneous Removal of SO2 and NO from Simulated Flue Gas Streams Using Dielectric Barrier Discharge,” Plasma Chemistry and Plasma Processing., Vol. 119, pp. 414-423.
Chang, M. B., Kushner, M. J., and Rood, M. J., (1993) “Removal of SO2 and NO from Gas Streams via Combined Plasma Photolysis,” J. Environ. Eng., ASCE, Vol. 119, pp. 414-423.
Chang, M. B., and Tseng, T. D., (1996a) “Gas-phase Removal of H2S and NH3 with Dielectric Barrier Discharges,” J. Environ. Eng., ASCE, Vol. 122, pp. 41-46.
Chang, M. B., and Tseng, T. D., (1996b) “Destruction of Inorganic Odor-Causing Substances - H2S and NH3 with Plasma Generation,” J. Chinese Inst. Environ. Eng., Vol. 6, pp. 31-41.
Chang, M. B., and Yang, S. C., (2001) “NO/NOx Removal with C2H2 as Additive via Dielectric Barrier Discharges,” AIChE Joural - American Institute of Chemical Engineers, Vol. 47, No. 5, pp. 1226-1233.
Chapman, B., (1980) Glow Discharge Processes, A Wiley-Interscience Publication, Canada, pp. 297-342.
Cho, S. M., (1994) “Properly Apply Selective Catalytic Reduction for NOx Removal ,” Chem. Eng. Prog., Jan, pp. 39-45.
Civitano, L., Dinelli, G., Busi, F., D’Angelantonio, M., Gallimberti, I., and Rea, M., (1987) Flue Gas Simultaneous DeNOx/DeSOx by Impulse Corona Energization, Report IAEA-TECDOC-428.
Colannino, J., (1993) “Low-cost Techniques Reduce Boiler NOx," Chem. Eng., Vol. 100, No. 2, pp. 100-106.
Copper, C. D., and Alley, F. C., (1990) Air Pollution Control: A Design Approach, Waveland Press, Inc., Illinois.
Duo, W., Dam-Johansen, K., and Ostergaard, K., (1992) “Kinetics of Gas-phase Reaction between Nitric Oxide, Ammonia and Oxygen,” J. Chem. Eng., Vol. 70, pp. 1014-1020.
Frank, N. W., Miller, G. A., and Reed, D. A., (1987) “Operating and Testing a Combined SO2 and NOx Removal Facility,” Environ. Prog., pp. 177-182.
Folsom, B. A., Sommer, T. M., and Payne, R., (1991) “ Demonstration of Combined NOx and SO2 Emission Control Technologies Involving Gas Reburning,” Proceeding of the AFRE-JFRC International Conference on Environmental Control of Combustion Process, Honolulu, HI, October.
Gentile, A. C., and Kushne, M. J., (1995) “Reaction Chemistry and Optimization of Plasma Remediation of NxOy from Gas Stream,” J. Appl. Phys., Vol. 78, No. 3, pp. 2074-2085.
Glassman, I., (1987) Combustion, second edition, Academic Press, Orlando, FL.
Ho, T. Y., Widmer, N. C., Chen, S. L., (1997) “Study of COG and BFG Reburning for the Control of NOx Emissions from Coal Fired Boilers,” Proceeding of the First Asia-Pacific Conference on Combustion, pp. 520-522.
Helfritch, D. J., Feldman, P. L., Efthimion, P. C., and McNeill, D. H., (1987) Microwave Energy for SO2 and NOx Removal from Flue Gas, Final Report No. DOE/PC/81002-T20.
Izutsu, M., and Okabe, R., (1997) “Final Stage Development to Commercialize EBA Process,” Non-Thermal Plasma Technology for Gaseous Pollution Control, Proceedings of the Second International Symposium, Salvador, Brazil.
Kline, L. E., Partlow, W. D., Bies, W. E., (1989) “Electron and Chemical Kinetics in Methane RF Glow-Discharge Deposition Plasmas,” J. Appl. Phy., Vol. 65, pp. 70-77.
Li, Z. S., Aoki, S., and Chang, J. S., (1997) “Non-thermal Plasma Commercial Plants and Pilot Studies in China,” Non-Thermal Plasma Technology for Gaseous Pollution Control, Proceedings of the Second International Symposium, Salvador, Brazil.
Lasalle, A., and Roizard, C., (1992) “Removal of NOx from Flue Gases Using the Urea Acidic Process Kinetics of the Chemical Reaction of Nitrous Acid with Urea,” Ind. Eng. Chem., Vol. 31, pp. 777-780.
Lindstedt, R. P., Lockwood, F. C., and Selim, M. A., (1994) “Detailed Kinetic Modeling of Chemistry and Temperature Effects on Ammonia Oxidation,” Combust, Sci. Tech., Vol. 99, pp. 253-276.
Liu, H., Hampartsoumian, E., and Gibbs, B. M., (1997) “Evaluation of the Optimal Fuel Characteristics for Efficient NO Reduction by Coal Reburning ,” Fuel, Vol. 76, No. 11, pp. 985-993.
Lucas, D., and Brown, N. J., (1982) “Characterization of the Selective Reduction of NO by NH3,” Combust. Flame, Vol. 47, pp. 219-234.
Lyon, R. K., (1976) “The NH3-NO-O2 Reaction,” Int. J. Chem. Kinet., Vol. 8, pp. 315-318.
Lyon, R. K., (1987) “Thermal De-NOx,” Environ. Sci. Technol., Vol. 21, pp. 231.
Miller, J. A., and Bowman, C. T., (1989) “Mechanism and Modeling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci., Vol. 15, pp. 287-338.
Mizeraczyk, J., Chang, J. S., and Jogan, K., (1993) “The Effect of Ammonia Concentration on the Reduction of NOx in a Dry Combustion Gas by a Flow Stabilized Corona Discharge Reactor,” Proceeding of the 4th International Symposium on High Pressure Low Temperature Plasma Chemistry.
Mizuno, A., Shimizu, K., and Chakrabarti, A., (1995) “NOx Removal Process Using Pulsed Discharge Plasma,” IEEE Transactions on Industry Applications, Vol. 31, No. 5, pp. 957-963.
Mok, Y., and Nam, I-S., (1999) “Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO2 and NOx from Iron-Ore Sintering Flue Gas,” IEEE Transactions on Plasma Scince, Vol. 27, pp. 1188-1196.
Niessen, W., Wolf, O., Schruft, R., and Neiger, M., (1998) “The Influence of Ethene on the Conversion of NOx in a Dielectric Barrier Discharge,” J. Phys. D: Appl. Phys. 31, pp. 542-550.
NISTWeb, (2000) “NIST Standard Reference Database No. 69,”, http://webbook.nist.gov/cgi/cbook.cgi., (accessed Feb 2000 ).
Ohkubo, T., Kanazawa, S., Nomoto, Y., and Chang, J. S., (1996) “Time Dependence of NOx Removal Rate by a Corona Radical Shower System,” IEEE Transactions on Industry Applications, Vol. 32, No. 5, pp. 1058-1062.
Pashai, B., Dhali, S. K., and Honea, F., (1994) “Electrical Characteristics of a Coaxial Dielectric Barrier Discharge,” J. Phys. D: Appl. Phys., Vol. 27, pp. 2107-2110.
Pershing, D.W., and Wendt, J.O.L., (1976) “Pulverized Coal Combustion: the Influence of Flame Temperature and Coal Combustion on Thermal and Fuel NOx,” Presented at the 16th Combustion Symposium, August.
Pratapas, J., and Bluestein, J., (1994) “Natural Gas Reburn: Cost-Effective NOx Control,” Power Eng., Vol. 98, pp. 47-50.
Pohl, J. H., and Sarofim, A. F., (1976) “Devolatilization and Oxidation of Coal Nitrogen,” Presented at the 16th Combustion Symposium, August.
Radtke, F., and Baiker, A., (1995) “Formation of Undesired By-products in De-NOx Catalysis by Hydrocarbons,” Catal. Today, Vol. 26.
Raizer, Y. P., Allen, J. E., and Kisin, V. I., (1991) Gas Discharge Physics, ISBN 3-540-19462-2 Springer-Verlag Berlin Heidelberg New York, pp. 8-33.
Rolader, G. E., Roger, J. W., and Nejezchleb, A. J., (1997) “Non-Thermal Plasma Discharge Based NOx Removal System for Diesel Engine Exhaust,” Proceeding of the Air & Waste Management Association’s 90th Annual Meeting & Exhibition, June 8-13, Toronto, Ontario, Canada.
Roth, B., Angele, H., Witting, S., Willibald, U., Platzer, K. H., and Schafer, W., (1991) “Pilot Project Electron Beam Process (EBP) at the Badenwerk Power Plant Karlsruhe,” VGB Kraftwerkstechnik, Vol. 4, pp. 361-368.
Sathiamoorthy, G., Kalyana, S., and Finney, W. C., (1999) “Chemical Reaction Kinetics and Reactor Modeling of NOx Removal in a Pulsed Streamer Corona Discharge Reactor,” Ind. Eng. Chem. Res., Vol. 38, pp. 1844-1855.
Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, and G. S., Hicks, R. F., (1998) “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,” IEEE Transaction on Plasma Scince, Vol. 26, No. 6, pp. 1685-1694
Song, Y. H., Shin, W. H., Choi, Y. S., Kim, S. J., and Chang, G. H., (1997) “Industrial Application of Pulse Corona Process for Treating Combustion Flue Gas,” Non-Thermal Plasma Technology for Gaseous Pollution Control, Proceedings of the Second International Symposium, Salvador, Brazil.
Smoot, L. D., Hill, S. C., and Xu, H., (1998) “ NOx Control through Reburning,” Prog. Energy Combust. Sci., Vol. 24, pp. 385- 408.
Smyth, K. C., (1996) “NO Production and Destruction in a Methane/Air Diffusion Flame,” Combust. Sci. Tech., Vol. 115, pp151-176.
Sun, W., Pashaie, B., Dhali, S. K., and Honea, F. I., (1996) “Non-thermal Plasma Remediation of SO2/NO Using a Dielectric-Barrier Discharge,” J. Appl. Phys., Vol. 79, No. 7, pp. 3438- 3444.
Takahashi, Y., Sakai, M., Kunimoto, T., Ohme, S., Haneda, H., Kawamura, T., and Kaneko, S., (1983) In Proceedings of the 1982 Joint Symposium on Stationary NOx Control, Report No. CS-3182, EPRI, July.
Takaki, K., Jani, M. A., and Fujiwara, T., (1997) “Reduction of Air Pollutants in the Exhaust Gas of the Incinerator by PPCP (Pulse Corona Induced Plasma Chemical Process),” Non-Thermal Plasma Technology for Gaseous Pollution Control, Proceedings of the Second International Symposium, Salvador, Brazil.
Takeuchi, H., Ando, M., and Kizawa, N., (1977) “Absorption of Nitrogen Oxides in Aqueous Sodium Sulfite and Bisulfite Solutions,” Ind. Eng. Chem., Process Des. Dev., Vol. 16, No. 3, pp. 303-308.
Tamaki, A., Koumi, H., Obata, S., Kishida, H., Fujihira, H., and Sakakibara, K., (1997) “Reduction of Air Pollutants in the Exhaust Gas of the Incinerator by PPCP (Pulse Corona Induced Plasma Chemical Process),” Non-Thermal Plasma Technology for Gaseous Pollution Control, Proceedings of the Second International Symposium, Salvador, Brazil.
Tsai, S. S., Bedell, S. A., Kirby, L. H. and Zabcik, D. J., (1989) “Overview of Industrial Source Control for Nitrogen Oxides,” Environ. Prog., Vol. 8, No. 2, pp. 126-129.
Urashima, K., Chang, J. S., and Ito, T., (1997) “Remove of Nitric Oxide in Flue Gases by Multipoint to Plane Dielectric Barrier Discharge,” IEEE Transcations on Plasma Science, Vol. 27, No. 4, pp. 1137-1145.
U.S. EPA, (1996) Summary Report: Control of NOx Emissions by Reburning, Technical Report EPA/625/R-96/001, pp. 1-70.
U.S. EPA, (1998) NOx: How Nitrogen Oxides Affect the Way We Live and Breathe, Report EPA-456/F-98-005, Office of Air Quality and Standards, Research Triangle Park, NC 27711.
Van Veldhuizen, E. M., Rutgers, W. R., and Bityurin, V. A., (1996) “Energy Efficiency of NO Removal by Pulsed Corona Discharges,” Plasma Chemistry and Plasma Processing, Vol. 16, No. 2, pp. 227-247.
Williams, B. A., and Fleming, J. W., (1995) “Comparison of Species Profiles between O2 and NO2 Oxidizers in Premixed Methane Flames,” Combust. Flame., Vol.100, pp. 571-590.
Wood, S.C., (1994) “Select the Right NOx Control Technology,” Chem. Eng. Prog., pp. 32-38.
Yamamoto, T., Yang, C. L., Beltran, M. R., and Kravets, Z., (2000) “Pasma-Assisted Chemical Process for NOx Control,” IEEE Transactions on Industry Applications, Vol. 36, No. 3, pp. 923-927.
Yamamoto, T., Sonoyama, K., and Hosokawa, S., (2001) “Emission Control from Incinerator Plant Using Nonthermal Plasma-Chemical Process,” Non-Thermal Plasma Technology for Pollution Control, Proceedings of the Third International Symposium, Seogwipo, Cheju Island, Korea.
Zamansky, V. M., Ho, L., Maly, P. M., and Seeker, W. R., (1997) “ Reburning Prompted by Nitrogen and Sodium-Containing Compounds ,” Proceeding of the Twenty-Sixth Symposium (International) on Combustion, Pittsburgh, PA., pp. 1135-1145.
行政院環保署 (2000),煙氣迴流與火上風去除氮氧化物控制技術示範推廣計畫,環保署空保處,計畫編號:EPA-89-FA12-03-050。
李灝銘 (2001),「以低溫電漿去除揮發性有機物之研究」,國立中央大學環境工程研究所博士論文,中壢,台灣。
李灝銘、張木彬、楊士朝 (2000),「低溫電漿添加乙烯去除氮氧化物之反應機制探討」,第十七屆空氣污染控制技術研討會論文集。
張君正、張木彬 (1994),「氮氧化物生成機制與控制技術」,工業污染防制,第13卷,第2期。
游生任 (2000) ,「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,國立中央大學環境工程研究所碩士論文,中壢,台灣。
楊士朝 (1998),「以低溫電漿去除氮氧化物之可行性研究」,國立中央大學環境工程研究所碩士論文,中壢,台灣。
鄭欽峰 (1996),「低溫非觸媒還原法去除氮氧化物之可行性研究」,國立中央大學環境工程研究所碩士論文,中壢,台灣。
蔡健忠、李偉鈞 (1998),「低污染燃燒技術:商業化再燃燒技術(Reburn)特徵與優點」,工業污染防治報導,第123期,第6-8頁。
蔡健忠 (1997), De-NOx燃燒技術介紹,工研院能資所-技術報告。
萬皓鵬 (2000),「汽電共生及工業鍋爐氮氧化物排放標準修訂內容」,第一屆氮氧化物排放控制技術交流會論文集。
赤崎正則、村岡克紀、渡邊征夫、狫原建治 (1991),電漿工學的基礎,復文書局,第9-44頁。
鄧熙聖 (1998),氮氧化物減量技術—國內外選擇性觸媒還原法應用狀況及技術發展調查,成功大學化工系-國科會專題研究計畫環保署合作研究計劃報告。
賴正昕、劉國棟、黃自立 (1996),「選擇性觸媒還原法排煙脫硝系統SCR de-NOx控制實務」,工業污染防制,第57期。
林美珍 (1992),「如何使用NOx OUT來達到更好的氮氧化物控制」,化工,第39卷,第6期。
翁瑞裕 (1996),「選擇性觸媒還原法(SCR)脫硝法」,工業污染防制,第57期。
指導教授 張木彬(Moo-Been Chang) 審核日期 2001-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明