博碩士論文 88341010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:13.58.112.1
姓名 柯勝利(Sheng-Li Ko)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 對苯二乙烯衍生物的合成與光電性研究/ 合成含立體選擇性的α次甲基丁內酯化合物
(Study of the Synthesis of Oligo(phenylenevinylene)sand Their Photophysical and Optoelectronic Properties /Stereoselective Synthesis of (Z)-a-Phenoxymethy-lene-g-butyrolactone from 2-Propynyloxybenzene )
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主題之一是合成一系列在分子內不同位置上帶有拉電子的氰基
或推電子的甲氧基之二苯乙烯苯,或稱苯乙烯寡分子,並研究其吸收與放射光譜
及在電致發光上的性質。研究顯示,上述這些分子,可作填充劑置於電子傳輸層
內並放出藍光和綠光。正己氧基與2-乙正己氧基及氰基在苯乙烯寡分子的吸收與
放射光譜中的最大吸收與放射波長並無明顯的不同,但2-乙正己氧基在電致發光
二極體中可比正己氧基產生更純的藍光。推電子的甲氧基則會產生較偏綠光的電
致發光波長。研究結果也顯示具有高螢光量子產率的化合物未必具有高電致發光
之量子產率,反而具有較低螢光量子產率的化合物可具有較高的電致發光之量子
產率。帶有氰基及烷氧基之二苯乙烯苯,在鐵氟龍之表面上作摩擦-轉移後可作
取向附生性的生長。而此二苯乙烯苯與鐵氟龍之雙層材料也在吸收與放射光譜上
顯示出非比尋常的非等方性的特性。我們根據其吸收與放射光譜在平行與垂直方
向上呈45 度角的激發光之下得到的結果,提出三種分子在鐵氟龍表面上的可能
之立體排列狀態。亦即,與鐵氟龍之表面上摩擦方向有垂直,平行,和垂直與平
行三種空間的排列。原子力顯微鏡的結果與三種分子在鐵氟龍表面上的可能之立
體排列狀態也非常吻合。共軛型的炔酮類化合物在碘化鈉,氯化三甲基矽及水,
並以乙 作溶劑下,可進行反應得到產率及立體選擇性均佳的非共軛型的(順式)-
碘化烯酮類化合物。研究結果顯示3-癸炔-2-酮的反應是由先產生的碘化氫進行
炔基加成反應,得到(順式)-及(反式)-4-碘-3-癸烯-2-酮,再進行氯化三甲基矽催
化的非共軛化反應產生(順式)-4-碘-4-癸烯-2-酮。利用上述非共軛化反應,我們
成功地開發一種利用碘化非共軛烯酮的分子來合成在α-位置上帶有順式的苯氧
或苯硫取代基之碳-碳環外雙鍵丁內酯化合物。此類化合物可用來作為DNA 的
切割試劑,濃度可低至10 µM。
摘要(英) A series of distyrylbenzene (DSB) derivatives, as oligo(para-phenylene-
vinylene) (OPV), were synthesized and assessed as the emitter in organic light
emitting diode (OLED) fabrication. The presence of electron-withdrawing cyano
group and electron-donating methoxy group at various positions in the molecule to
evaluate their influence on the photophysical property and the electroluminescent
behavior of these derivatives in OLED were studied. Bright blue emissions were
achieved with these materials as a dopant. There were not much difference in the
absorption and emission spectra of the compounds containing n-hexyloxy and
2-ethylhexyloxy groups. However, 2-ethylhexyloxy groups produce more saturated
blue color in their EL. The compounds with higher fluorescent quantum yield did not
result in higher EL quantum efficiency in this multiplayer OLED fabrication as that of
compounds with lower fluorescent quantum yield. DSB derivatives with cyano and
alkoxy groups grew epitaxially on the friction-transferred poly(tetrafluoroethylene)
(PTFE) layer. DSBs/PTFE double layers indicated the remarkable anisotropic feature
in absorption and emission properties. We concluded that trans,trans-1,4-
di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene molecules take two
kinds of orientations on the PTFE layer in which the long axes of
trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene are
parallel and normal to the substrate surface. On the other hand, the long axes of
trans,trans-1,4-di(2-ethylhexyloxy)-2,5-bis[2-(2-cyanophenyl)ethenyl]- benzene and
trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(3-cyanophenyl)-ethenyl]benzene ori-
ent inclined and parallel to the substrate, respectively. Treatment of conjugated
alkynone with NaI, TMSCl, and water in acetonitrile gave deconjugated
(Z)-3-iodo-3-alken-1-one in good yield and with high stereoselectivity (≥95%).
Mechanistic study showed that HI, generated from NaI, TMSCl and water, underwent
regioselective addition to the conjugated ynone, e.g. 3-decyn-2-one, to form
(E)-4-iodo-3-decen-2-one and (Z)-4-iodo-3-decen-2- one. Then, TMSCl catalyzed the
deconjugation reaction to form deconjugated (Z)-4-iodo-4-decen-2-one. The
application of the above deconjugation reaction was demonstrated by the
stereoselective synthesis of (Z)-α-phenoxy-methylene- γ-butyrolactone and its
hydrofuran analogues. DNA cleavage study also showed that γ-butyrolactone with
(Z)-configuration at α-alkylidene gave better result than its analogue even at 10µM
for only 10 min. The development of an efficient method for the preparation of
(Z)-α-phenoxy-methylene-γ-butyrolactone and (Z)-α-phenylthiomethyl-γ-butyro-
lactone derivatives from 2-propynyoxybenzene and 2-propynylthiobenzene were
described.
關鍵字(中) ★ 對苯二乙烯衍生物
★ 丁內酯化合物
關鍵字(英) ★ distyrylbenzene derivatives
★ butyrolactone
論文目次 中文摘要………………….…………………………..... I
Abstract ……………………………………………..… III
CHAPTER 1 Efficient Electroluminescent
Material for Light-Emitting
Diodes from 1,4-Distyrylbenzene
Derivatives
Page
Abstract ……………………………………………… 1
1.1 Introduction ……………………………………………… 1
1.2 Instrumentation ……………………………………………… 2
1.3 Devices Fabrication ……………………………………………… 3
1.4 Results and Discussion ……………………………………………… 4
1.5 Conclusion ……………………………………………… 18
1.6 Experimental ……………………………………………… 18
1.7 References ……………………………………………… 26
Chapter 2 Fabrication and Characteriz-
ation of Orientatation-Controll-
ed Alkoxy- and Cyano-Sub-
stituted Distyrylbenzene Deriva-
tives in Thin Film
Page
Abstract ……………………………………………… 29
2.1 Introduction ……………………………………………… 29
2.2 Results and Discussion ……………………………………………… 30
2.3 Conclusion ……………………………………………… 52
2.4 Experimental ……………………………………………… 53
2.5 References ……………………………………………… 56
Chapter 3 Stereoselective Synthesis of
(Z)-α-Phenoxy-methylene-γ-buty
rolactone from 2-Propynyloxy-
benzene as DNA Cleavage
Reagent
Page
Abstract ……………………………………………… 57
3.1 Introduction ……………………………………………… 57
3.2 Results and Discussion ……………………………………………… 71
3.3 Conclusion ……………………………………………… 77
3.4 Experimental ……………………………………………… 78
3.5 References ……………………………………………… 95
Chapter 4 Stereoselective Synthesis of
(Z)-α-Phenylthio-methylene-γ-
butyrolactone and Its Analogues
from 2-Propynylthiobenzene
Page
Abstract ……………………………………………… 100
4.1 Introduction ……………………………………………… 100
4.2 Results and Discussion ……………………………………………… 101
4.3 Conclusion ……………………………………………… 104
4.4 Experimental ……………………………………………… 104
4.5 References ……………………………………………… 110
Chapter 5 Conclusion Page
5.1 Study of the Synthesis of
Oligo(phenylenevinylene)s
and Their Photophysical
and Opto- electronic
Properties
………………………………………………
112
5.2 Stereoselective Synthesis of
(Z)-α-Phenoxymethylene-γ-
butyrolactone from
2-Propynyloxybenzene
………………………………………………
114
List of Schemes Page
Scheme 1.1 Synthesis of the Cyano- or Methoxy-Substituted Distyryl-
benzene………………………………………………………..…
5
Scheme 3.1 Plausible Mechanism for the TMSCl-Catalyzed Deconjugation
of (Z)-4-iodo-4-decen-2-one……………………………………..
64
Scheme 3.2 Plausible Hydroiodination and Deconjugation Processes for
3-Decyn-2-one……………………………………………………
66
Scheme 3.3 Plausible Mechanism for Pd-Catalyzed CO Insertion and
Cyclization………………………………………………………..
69
Scheme 3.4 Irreversible Alkylation of the Methylene Lactone
Moiety…………………………………………………………....
71
Scheme 3.5 Preparation of α-Phenoxymethylene or Phenoxymethyl-
Substituted γ-Butyrolactones………………………………….…
74
Scheme 4.1 Preparation of α-Phenylthiomethylene or Phenylthiomethyl-
Substituted γ-Butyrolactones……………………………………..
103
List of Figures Page
Figure 1.1 Device Configuration of Blue EL Devices……..…………………. 4
Figure 1.2 Normalized UV spectra of DSB derivatives and emission of
TPBI………………………………………………………………..
6
Figure 1.3 Relative HOMO/LUMO Energy Levels of ITO, NPB, CBP, TPBI,
Mg:Ag Alloy, and CN-PPV Oligomers…………..………………..
9
Figure 1.4 Relative Energy Levels of Materials in the Three-Layer
Device………………………………………………..………..…...
10
Figure 1.5 Normalized EL spectra of DSBs in ITO/NPB/CBP/TPBI + Dopant
(1%)/MgAg….……………..…………………………………….
11
Figure 1.6 CIE Coordinates of 1-1 ~ 1-3……………………………………… 12
Figure 1.7 I-V Curve and Luminescence of DSB Series 1-1 ~ 1-3………..….. 13
Figure 1.8 I-V Curve and Luminescence of DSB Series 1-4 ~ 1-6……..…….. 13
Figure 1.9 I-V Curve and Luminescence of DSB Series 1-7 ~ 1-9…..……….. 14
Figure 1.10 Turn-on Voltage of DSB Series…………………………..………... 14
Figure 1.11 CIE Coordinates of 1-4 ~ 1-6…………………………..………….. 16
Figure 1.12 CIE Coordinates of 1-7 ~ 1-9………………………..…………….. 17
Figure 2.1 Molecular Structures of DSB Derivatives Used Here…………….. 30
Figure 2.2 Absorption and PL Spectra of DSBs in CHCl3 Solution….…….… 32
Figure 2.3 TEM and ED pattern of 2-1/PTFE(a), 2-2/ PTFE(B) and
2-3/PTFE(c) double layer………………………………….……….
33
Figure 2.4 Experimental set up for polarized PL mesurement and polarized
absorption and PL spectra of DSBs/PTFE double layer……..…….
35
Figure 2.5 Proposed Model of Molecular Orientation of DSBs/PTFE Double
Layer………………………………………………………….……
37
Figure 2.6 AFM image of 2-1 film deposited on a friction-transferred PTFE
layer kept at rt. (film thickness: 20 nm)……………………………
38
Figure 2.7 AFM image of 2-1 film deposited on a KBr substrate kept at rt.
(film thickness: 20 nm)………………………………………….…
39
Figure 2.8 AFM image of 2-2 film deposited on a friction-transferred PTFE
layer kept at rt. (film thickness: 20 nm)……………………………
40
Figure 2.9 AFM image of 2-2 film deposited on a KBr substrate kept at rt.
(film thickness: 20 nm)………………………………….…………
41
Figure 2.10 AFM image of 2-3 film deposited on a friction-transferred PTFE
layer kept at rt. (film thickness: 20 nm)…………………………....
42
Figure 2.11 AFM image of 2-3 film deposited on a KBr substrate kept at rt.
(film thickness: 20 nm)…………………………………….………
43
Figure 2.12 AFM image of 1-2 film deposited on a friction-transferred PTFE
layer kept at rt. (film thickness: 20 nm)…………………………....
44
Figure 2.13 AFM image of 1-2 film deposited on a KBr substrate kept at rt.
(film thickness: 20 nm)………………………………………….…
45
Figure 2.14 AFM image of 1-3 film deposited on a friction-transferred PTFE
layer kept at rt. (film thickness: 29 nm)…………………….……...
46
Figure 2.15 AFM image of 1-3 film deposited on a KBr substrate kept at rt.
(film thickness: 29 nm)…………………………………………….
47
Figure 2.16 AFM image of 1-3 film deposited on a friction-transferred PTFE
layer kept at 50℃. (film thickness: 37 nm)………………………..
48
Figure 2.17 AFM image of 1-3 film deposited on a KBr substrate kept at 50℃.
(film thickness: 37 nm)…………….………………………………
49
Figure 2.18 UV-VIS spectra of 2-1, 2-2, and 2-3 films deposited on a KBr
substrate……………………………………………………………
50
Figure 2.19 Polarized absorption spectra of 2-1 / PTFE double layer………….. 50
Figure 2.20 Polarized absorption spectra of 2-2 / PTFE double layer………….. 51
Figure 2.21 Polarized absorption spectra of 2-3 / PTFE double layer…………. 51
Figure 2.22 Polarized absorption spectra of 1-2 / PTFE double layer………….. 52
Figure 3.1 1H-NMR Spectra Changes with Time for TMSCl-Promoted
Deconjugation of (E)- and (Z)-4-Iodo-3-decen-2-one to Form
(Z)-4-Iodo-4-decen-2-one…………………………………………..
63
Figure 3.2 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
1) at Different Concentration in DMSO……………………………
75
Figure 3.3 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
1) at Different Time………………………………………………...
76
Figure 3.4 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
1) at Different pH Values…………………………………………...
77
List of Tables Page
Table 1.1 The absorption λmax, extinction coefficiency, emission λmax,
excitation λmax, fluorescent quantum yield, and the appearance
color of PPV oligomers…………………………………………….
8
Table 1.2 Performance of the LEDs Fabricated in This Study………………. 15
Table 3.1 Conversion of (Z)-3-Iodo-3-alken-1-one A into (Z)-a-Alkyli dene-
γ- butyrolactone C…………………………………………….…...
68
Appendix Page
1H NMR spectrum of Compound 1-1 …………………………..……... 116
13C NMR spectrum of Compound 1-1 …………………………..……... 117
1H NMR spectrum of Compound 1-2 …………………………..……... 118
13C NMR spectrum of Compound 1-2 …………………………..……... 119
1H NMR spectrum of Compound 1-3 …………………………..……... 120
13C NMR spectrum of Compound 1-3 …………………………..……... 121
1H NMR spectrum of Compound 1-4 …………………………..……... 122
13C NMR spectrum of Compound 1-4 …………………………..……... 123
1H NMR spectrum of Compound 1-5 …………………………..……... 124
13C NMR spectrum of Compound 1-5 …………………………..……... 125
1H NMR spectrum of Compound 1-6 …………………………..……... 126
13C NMR spectrum of Compound 1-6 …………………………..……... 127
1H NMR spectrum of Compound 1-7 …………………………..……... 128
13C NMR spectrum of Compound 1-7 …………………………..……... 129
1H NMR spectrum of Compound 1-8 …………………………..……... 130
13C NMR spectrum of Compound 1-8 …………………………..……... 131
1H NMR spectrum of Compound 1-9 …………………………..……... 132
13C NMR spectrum of Compound 1-9 …………………………..……... 133
1H NMR spectrum of Compound 2-1 …………………………..……... 134
13C NMR spectrum of Compound 2-1 …………………………..……... 135
1H NMR spectrum of Compound 2-2 …………………………..……... 136
13C NMR spectrum of Compound 2-2 …………………………..……... 137
1H NMR spectrum of Compound 2-3 …………………………..……... 138
13C NMR spectrum of Compound 2-3 …………………………..……... 139
1H NMR spectrum of Compound 3-1a …………………………..……... 140
13C NMR spectrum of Compound 3-1a …………………………..……... 141
1H NMR spectrum of Compound 3-1b …………………………..……... 142
13C NMR spectrum of Compound 3-1b …………………………..……... 143
1H NMR spectrum of Compound 3-2a …………………………..……... 144
13C NMR spectrum of Compound 3-2a …………………………..……... 145
1H NMR spectrum of Compound 3-2b …………………………..……... 146
13C NMR spectrum of Compound 3-2b …………………………..……... 147
1H NMR spectrum of Compound 3-2c …………………………..……... 148
13C NMR spectrum of Compound 3-2c …………………………..……... 149
1H NMR spectrum of Compound 3-2d …………………………..……... 150
13C NMR spectrum of Compound 3-2d …………………………..……... 151
1H NMR spectrum of Compound 3-3a …………………………..……... 152
13C NMR spectrum of Compound 3-3a …………………………..……... 153
1H NMR spectrum of Compound 3-3b …………………………..……... 154
13C NMR spectrum of Compound 3-3b …………………………..……... 155
1H NMR spectrum of Compound 3-3c …………………………..……... 156
13C NMR spectrum of Compound 3-3c …………………………..……... 157
1H NMR spectrum of Compound 3-3d …………………………..……... 158
13C NMR spectrum of Compound 3-3d …………………………..……... 159
1H NMR spectrum of Compound 3-4a …………………………..……... 160
13C NMR spectrum of Compound 3-4a …………………………..……... 161
1H NMR spectrum of Compound 3-4b …………………………..……... 162
13C NMR spectrum of Compound 3-4b …………………………..……... 163
1H NMR spectrum of Compound 3-4c …………………………..……... 164
1H NMR spectrum of Compound 3-5a …………………………..……... 165
1H NMR spectrum of Compound 3-5b …………………………..……... 166
1H NMR spectrum of Compound 3-5c …………………………..……... 167
13C NMR spectrum of Compound 3-5c …………………………..……... 168
1H NMR spectrum of Compound 3-5d …………………………..……... 169
1H NMR spectrum of Compound 3-6a …………………………..……... 170
1H NMR spectrum of Compound 3-6b …………………………..……... 171
13C NMR spectrum of Compound 3-6b …………………………..……... 172
1H NMR spectrum of Compound 3-6c …………………………..……... 173
13C NMR spectrum of Compound 3-6c …………………………..……... 174
1H NMR spectrum of Compound 3-6d …………………………..……... 175
13C NMR spectrum of Compound 3-6d …………………………..……... 176
1H NMR spectrum of Compound 3-7a …………………………..……... 177
13C NMR spectrum of Compound 3-7a …………………………..……... 178
1H NMR spectrum of Compound 3-7d …………………………..……... 179
13C NMR spectrum of Compound 3-7d …………………………..……... 180
1H NMR spectrum of Compound 3-8a …………………………..……... 181
13C NMR spectrum of Compound 3-8a …………………………..……... 182
1H NMR spectrum of Compound 3-8b …………………………..……... 183
13C NMR spectrum of Compound 3-8b …………………………..……... 184
1H NMR spectrum of Compound 3-8c …………………………..……... 185
13C NMR spectrum of Compound 3-8c …………………………..……... 186
1H NMR spectrum of Compound 3-8d …………………………..……... 187
13C NMR spectrum of Compound 3-8d …………………………..……... 188
1H NMR spectrum of Compound 3-9a …………………………..……... 189
13C NMR spectrum of Compound 3-9a …………………………..……... 190
1H NMR spectrum of Compound 3-9b …………………………..……... 191
13C NMR spectrum of Compound 3-9b …………………………..……... 192
1H NMR spectrum of Compound 3-9d …………………………..……... 193
13C NMR spectrum of Compound 3-9d …………………………..……... 194
1H NMR spectrum of Compound 4-1 …………………………..……... 195
1H NMR spectrum of Compound 4-2 …………………………..……... 196
13C NMR spectrum of Compound 4-2 …………………………..……... 197
1H NMR spectrum of Compound 4-3 …………………………..……... 198
13C NMR spectrum of Compound 4-3 …………………………..……... 199
1H NMR spectrum of Compound 4-4 …………………………..……... 200
13C NMR spectrum of Compound 4-4 …………………………..……... 201
1H NMR spectrum of Compound 4-6 …………………………..……... 202
13C NMR spectrum of Compound 4-6 …………………………..……... 203
1H NMR spectrum of Compound 4-7 …………………………..……... 204
13C NMR spectrum of Compound 4-7 …………………………..……... 205
1H NMR spectrum of Compound 4-8 …………………………..……... 206
13C NMR spectrum of Compound 4-8 …………………………..……... 207
1H NMR spectrum of Compound 4-9 …………………………..……... 208
13C NMR spectrum of Compound 4-9 …………………………..……... 209
參考文獻 Chapter 1
1.7 REFERENCES
1. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holems, Nature, 1993, 365, 628.
2. H. E. Katz, S. F. Bent, W. L. Wilson, M. L. Schilling, and S. B. Ungashe, J. Am. Chem. Soc. 1994, 116, 6631.
3. (a) D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, and E. Steinhuber, J. Phys. Chem. B 1998, 102, 1902. (b) A. Heller, J. Chem. Phys. 1964, 40, 2839.
4. S. E. Döttinger, M. Hohloch, D. Hohnholz, J. L. Segura, E. Steinhuber, and M. Hanack, Synth. Metals, 1997, 84, 267.
5. H. Ndayikengurukiye, S. Jacobs, W. Tachelet, J. van der Looy, A. Pollaris, H. J. Geise, M. Claeys, J. M. Kauffamnn, and S. Janietz, Tetrahedron, 1997, 53, 13811.
6. J. Cornil, D. A. dos Santos, D. Beljoune, and J. L. Brédas, J. Phys. Chem. 1995, 99, 5604.
7. D. Oelkrug, A. Tompert, H. J. Egelhaaf, M. Hanack, E. Steinhuber, M. Hohloch, H. Meier, and U. Stalmach, Synth. Metals, 1996, 83, 231.
8. (a) K. H. Schweikart, M. Hanack, L. Lüer, and D. Oelkrug, Eur. J. Org. Chem. 2001, 293. (b) S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama, G. Katzer, and W. Fabian, J. Chem. Soc. Perkin Trans. 2, 1991, 861.
9. J. L. Segura and N. Martin, J. Mater. Chem. 2000, 10, 2403.
10. S. E. Döttinger, M. Hohloch, J. L. Segura, E. Steinhuber, M. Hanack, A. Tompert, and D. Oelkrug, Adv. Mater. 1997, 9, 233.
11. M. Hennecke, T. Damerau, and K. Mullen, Macromolecules 1993, 26, 3411.
12. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 1995, 67, 3853.
13. N. N. Barashkov, D. J. Guerrero, H. J. Olivos, and J. P. Ferraris, Synth. Metals 1995, 75, 153.
14. M. Hohloch, J. L. Segura, S. E. Döttinger, D. Hohnholz, E. Steinhuber, H. Spreitzer, and M. Hanack, Synth. Metals 1997, 84, 319.
15. B. Strehmel, A. M. Sarker, J. H. Malpart, V. Strehmel, H. Seifert, and D. C. Neckers, J. Am. Chem. Soc. 1999, 121, 1226.
16. (a) B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater. 1998, 10, 2235. (b) J. Shi, C. W. Tang, and C. H. Chen, U. S. Patent 1997, 5, 645, 948. (c) C. H. Chen and J. Shi, Coord. Chem. Rev. 1998, 171, 161.
17. Since the absorption
指導教授 陳暉、羅芬臺(Hui Chen) 審核日期 2003-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明