以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數：7 、訪客IP：34.228.194.177

姓名林希彥(Hsi-Yen Lin) 查詢紙本館藏 畢業系所機械工程學系 論文名稱具變形誘導異向性質之降伏曲面與材料函數的內涵模式

(Endochronic Model of Yield Surface and Material Function Accounting for Deformation Induced Anisotropy)相關論文檔案[Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]

- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的，進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定，切勿任意重製、散佈、改作、轉貼、播送，以免觸法。

摘要(中)本文主要探討內涵塑性理論之材料函數（material function） ，藉由適當地選擇材料函數中之材料參數，可將該材料函數區分成六種類型之態樣，以期更適切地描述材料在非對稱振幅循環負載下之材料行為，包括包辛格效應（Bauschinger effect）、循環硬化(軟化)、應力穩定飽和（saturation）、循環應力峰值（peek stress）的變化以及材料記憶消除（erasure of memory）行為，並以Shiao [1]及Lamba and Sidebottom [2]之實驗結果驗證本文之材料函數模式；另外本文提出一組與隨後降伏曲面(sequencent yield surface)之形狀特徵比 (aspect ratio)相關的材料函數，建立一降伏曲面的內涵模式，藉以模擬材料在小變形(small pre-strain range)下因變形誘導異向性（deformation induced anisotropy）而表現在其隨後降伏曲面呈前凸後扁狀( sharp front and blunt rear)的演化行為，另以Wu and Yeh [3] 對AISI 304 不銹鋼施以軸向、扭向以及軸扭雙向應變作用之實驗結果驗證本文之降伏曲面模式；採用本文之材料函數及降伏曲面模式預測材料循環塑性行為及降伏曲面的演化行為與實驗結果比對相當吻合。 摘要(英)In this article, a material function of endochronic theory is proposed for investigating the plastic behaviors of material. Depending on the material parameters properly chosen, the present model can be classified into six categories, and is appropriate for describing various materials behaving cyclic strain hardening inherently with respect to the deformation history. Experimental verification of the theory was demonstrated using the experimental results of Shiao [1] and Lamba and Sidebottom [2]. The theory is in good agreement with experimental results obtained by Shiao [1] through comparing the stress-strain hysteresis loops of SAE 4340 steel under axisymmetrically cyclic loading condition with various amplitudes. In addition, the present model is shown to be capable of describing the behavior of erasure of memory of materials, as experimentally observed by Lamba and Sidebottom [2]. In addition, an endochronic model of yield surface is proposed. Based on this model, the yield surface is simulated such that the forward and rear parts of the yield surface are described by different ellipses which are characterized by corresponding aspect ratio functions, respectively. Verification of the endochronic theory used the experimental results of yield surfaces obtained by Wu and Yeh [3] for AISI 304 stainless steel. The experiments were performed cyclically under uniaxial, torsional, and combined axial-torsional loading conditions. The result has shown that the agreement between the prediction and experiments is quite satisfactory. In addition to the distortion of the yield surface plastically behaving a sharp front accompanied by a blunt rear, the anisotropic kinematic hardening effect has been addressed in this investigation. 關鍵字(中)★ 循環應變硬化

★ 內涵理論

★ 材料函數

★ 記憶消除關鍵字(英)★ material function

★ cyclic strain hardening

★ endochronic theory

★ erasure of memory論文目次摘要 I

目錄 IV

圖表說明 IX

符號說明 X

第一章 緒論 1

1-1前言 1

1-2 文獻回顧 5

1-3 研究動機和方法 15

第二章 內涵塑性理論 19

2-1引言 19

2-2內涵本構方程式 20

2-2-1積分式內涵本構方程式 21

2-2-2增量式內涵本構方程式 23

2-2-3微分式內涵本構方程式 24

第三章 材料函數 26

3-1材料函數 26

3-2 本文之材料函數模式 28

3-2-1 材料函數之性質 29

3-2-2 材料參數 32

3-3 數值計算 33

3-3-1 積分式內涵本構方程式的數值計算 33

3-3-2 增量式內涵本構方程式的數值計算 35

3-3-3 微分式內涵本構方程式的數值計算 37

第四章 降伏曲面模式 40

4-1 降伏曲面 40

4-2 本文之降伏曲面模式 43

頁次

第五章 結果與討論 49

5-1 材料函數 49

5-1-1 軸向對稱等應變振幅循環負載 50

5-1-2 軸向非對稱應變振幅循環負載 51

5-1-3 軸向漸增應變振幅循環負載 52

5-1-4 軸向漸變均值應變振幅循環負載 53

5-1-5 軸向漸增均值應變與振幅之循環負載 54

5-1-6 材料記憶消除 55

5-2降伏曲面模式 57

5-2-1 初始降伏曲面 58

5-2-2 隨後降伏曲面 59

5-2-2-1 單軸向負載 59

5-2-2-2 扭向負載 60

5-2-2-3 軸-扭組合負載 61

第六章 結論與建議 63

6-1 結論 63

6-2 建議 65

參考文獻 67參考文獻[1] Shiao, Y. P. (2000), " A study on multiaxial cyclic loading and anisotropic plasticity of structural metals ", Ph.D. Thesis, National Taiwan University, Dept. of C.E.

[2] Lamba, H. S., and Siderbottom, O. M. (1978), " Cyclic plasticity for nonproportional path: part1：Cyclic hardening, erasure of memory, and subsequent strain hardening experiments ", J. of Eng. Mat. and Tech., Vol. 100, pp. 96-103.

[3] Wu, H.C., Yeh, W.C., (1991), " On the experimental determination of yield surfaces and some results of annealed 304 stainless steel ", Int. J. of Plasticity, Vol. 7, pp. 803-826.

[4] Tresca H., (1864), Comptes Rendus Acad. Sci. Paris, 59, pp.754.

[5] von Mises R., (1913), G ttinger. Nachrichten Math. Phys., Klasse, pp. 582.

[6] Ivey, H. J., (1961), " Plastic Stress-Strain Relations and Yield Surface for Aluminum Alloys ", J. Mech. Eng. Sci., Vol. 3, No.1, pp. 15-31.

[7] Mair, W. M. and Pugh, H. L. D., (1964), " Effect of Pro-strain on Yield Surfaces in Copper ", J. Mech. Eng. Sci., Vol. 6, pp. 150-163.

[8] Marjanovic, R., and Szczeinski, W., (1975), " On the Effect of Biaxial Cyclic Loading on the Yield Surface of M-63 Brass ", Acta Mech., No. 23, pp. 65-74.

[9] Phillips, A., Lin, C. S. and Justusson, J. W., (1972), " An Experimental Investigation of Yield Surface at Elevated Temperature ", Acta Mech., No. 14, pp. 119-146.

[10] Phillips, A. and Tang, J. L., (1972), " The Effect of Loading Path on the Yield Surface as Elevated Temperatures ", Int. J. of Solids and Structures, Vol. 8, pp. 463-474.

[11] Phillips, A. and Kasper, R., (1973), " On the Foundation of Thermoplasticity-An Experimental Investigation ", J. Appl. Mech., Vol. 40, pp. 891-896.

[12] Phillips, A., Tang, J. L. and Riccuti, M., (1974), " Some New Observation on Yield Surface ", Acta Mech., Vol. 20, pp. 23-29.

[13] Phillips, A. and Lu, W. Y., (1984), " An Experimental Investigation of Yield Surface and Loading Surface of Pure Aluminum with Stress-Controlled and Strain-Controlled paths of Loading ", J. of Engineering Material and Technology, Vol. 106, pp. 349-354.

[14] Dafalias, Y.F., Aifantis, E.C., (1990), " On the microscopic origin of the plastic spin ", Acta Mech., Vol. 82, pp. 31-48.

[15] Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F., Korzekwa, D.A., (1991), " Application of polycrystalline plasticity to sheet forming. Comp. Math ", Appl. Mech. Eng., Vol. 117, pp. 49-70.

[16] Ning, J., Aifantis, E.C., (1996), " Anisotropic yield and plastic flow of polycrystalline solids ", Int. J. Plasticity, Vol. 12, pp. 1221-1240.

[17] Miehe, C.,Schotte, J., Schroder, J., (1999), " Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains " Computational Mater. Sci., Vol. 16, pp. 372-382.

[18] Diard, O., Leclercq, S., Rousselier, G., Cailletaud. G., (2005), " Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries ", Int. J. Plasticity, Vol. 21, pp. 691-722.

[19] Khan, A.S., Cheng, P., (1996), " An anisotropic elastic plastic constitutive model for single and polycrystalline metals I- theoretical developments " Int. J. Plasticity, Vol. 12, pp. 147-162.

[20] Raabe, D., (2000), " Yield surface simulation for partially rescrystallized aluminum polycrystals on the basis of spatially discrete data ", Computational Mater. Sci., Vol. 19, pp. 13-26.

[21] Chiang, D.Y., Su, K.H., Liao C.H., (2002), " A study on subsequent yield surface based on the distributed-element model ", Int. J. Plasticity, Vol. 18, pp. 51-70.

[22] Bucher, A., Gorke, U.J., Kreißig, R., (2004), " A material model for finite elasto-plastic deformations considering a substructure ", Int. J. Plasticity, Vol. 20, pp. 619-642.

[23] Kowalczyk, K., Gambin, W., (2004), " Model of plastic anisotropy evolution with texture-dependent yield surface ", Int. J. Plasticity, Vol. 20, pp. 19-54.

[24] Ganapathysubramanian, S., Zabaras, N., (2005), " Modeling the thermoelastic–viscoplastic response of polycrystals using a continuum representation over the orientation space ", Int. J. Plasticity, Vol. 21, pp. 119-144.

[25] Shiratori, E., Ikegami, K., Yoshida, F., (1979), " Analysis of stress-strain relations by use of an anisotropic hardening plastic potential ", J. Mech. Phys. Solids, Vol. 27, pp. 213-229.

[26] Barlet, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., (2003), " Plane stress yield stress function for aluminum alloy sheets-part I: theory ", Int. J. Plasticity, Vol. 19, pp. 1297-1319.

[27] Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., (2005), " Linear transfomation-based anisotropic yield functions ", Int. J. Plasticity, Vol. 21, pp.1009-1039.

[28] Hu, W.L., (2005). " An orthotropic yield criterion in a 3-D general stress state ", Int. J. Plasticity, Vol. 21, pp. 1771-1796.

[29] Stoughton, T.B., Yoon, J.W., (2004), " A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming ", Int. J. Plasticity, Vol. 20, pp. 705-731.

[30] Vincent, L., Calloch, S., Marquis, D., (2004), " A general cyclic plasticity model taking into account yield surface distortion for multiaxial ratcheting ", Int. J. Plasticity, Vol. 20, pp. 1817-1850.

[31] Mroz, Z., (1967), " On the description of anistropic work-hardening ", J. Mech. Phys. Solids, Vol. 15, pp. 163-175.

[32] Khoei, A.R., Jamali, N., (2005), " On the implementation of a multi-surface kinematic hardening plasticity and its applications ", Int. J. Plasticity, Vol. 21, pp. 1741-1770.

[33] Krieg, R.D., (1975), " A practical two surface plasticity theory ", J Appl. Mech., Vol. 42, pp. 641-646.

[34] Dafalias, Y.F., Popov, E.P., (1976), " Plastic internal variables formalism of plasticity ", J. Appl. Mech., Vol. 43, pp. 645-651.

[35] Valanis, K.C., (1971), " A theory of viscoplasticity without a yield surface, Part I: General theory ", Arch. Mech., Vol. 23, pp. 517-551.

[36] Valanis, K.C., (1980), " Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic theory ", Arch. Mech., Vol. 32, pp. 171-191.

[37] Krempl, E. and Lu, H., (1984), " The hardening and rate dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of –phase strain cycling at room temperature ", J. Eng. Mater. Tech., Vol. 106, pp. 376-384.

[38] Tanaka, E., Murakami, S., and Ooka, M., (1985), " Effects of strain path shapes on non-proportional cyclic plasticity ", J. Mech. Phys. Solids, Vol. 33(6), pp. 559-575.

[39] Tanaka, E., Murakami, S., and Ooka, M., (1985), " Effects of plastic strain amplitudes on non-proportional cyclic plasticity ", Acta Mech., Vol. 57, pp. 167-192.

[40] Hopperstad, O. S., Langseth, M., and Remseth, S., (1995), " Cyclic stress-strain behaviour of alloy AA6060 T4, part I: biaxial experiments and modeling ", Int. J. of Plasticity, Vol. 11, pp. 725-739.

[41] Hopperstad, O. S., Langseth, M., and Remseth, S., (1995), " Cyclic stress-strain behaviour of alloy AA6060 T4, part II: biaxial experiments and modeling ", Int. J. of Plasticity, Vol. 11, pp.741-762.

[42] Cailletaud, G., (1984), " Some elements on multiaxial behavior of 316L stainless steel at room temperature ", Mech. of Mat, Vol. 3, pp. 333-345.

[43] Ellyin, F., and Wolodko, J.D., (1997), " Testing facilities for multiaxial loading of tubular specimens, multiaxial fatigue and deformation testing techniques ", ASTM STP 1280, S. Kalluri and P. J. Bonacuse, Eds, ASTM, pp. 7-24.

[44] Basuroychowdhury, I. N., and Voyiadjis, G. Z., (1998), " A multiaxial cyclic plasticity model for nonproportional loading cases ", Int. J. of Plasticity, Vol. 14, pp. 855-870.

[45] Benallal, A., LeGallo, P., Marquis, D., (1989), " An experimental investigation of cyclic hardening of 316 stainless steel and 2024 aluminum alloy under multiaxial loadings. Nuclear Engineering Design 114 ", pp. 345-353.

[46] Ohno, N., (1990)," Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity ", Appl. Mech. Rev. 43(11), pp. 283-295.

[47] Calloch, S., Marquis, D., (1999)," Triaxial tension–compression tests for multiaxial cyclic plasticity ", Int. J. of Plasticity, Vol. 15, pp. 521-549.

[48] Bocher, L., Delobelle, P., Robinet, P., Feaugas, X.,(2001), " Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension–torsion-internal and external pressure ", Int. J. of Plasticity, Vol. 17, pp. 1491-1530.

[49] Ohno, N., (1982), " A constitutive model of cyclic plasticity with a non-hardening strain region ", ASME J. Appl. Mech., Vol.49, pp.721-727.

[50] Ohno, N., Kachi, Y., (1986), " A constitutive model of cyclic plasticity for nonlinear hardening materials", ASME J. Appl. Mech., Vol.53, pp.395-403.

[51] Chaboche, J.L., Dang Van, K., Cordier, G., (1979), " Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel ", Transactions of SMiRT 5, Vol. L, paper No. L11/3.

[52] Chaboche, J.L., (1989), " Constitutive equations for cyclic plasticity and cyclic viscoplasticity ", Int. J. Plasticity, Vol.5, pp. 247-302.

[53] Choi, S., Krempl, E., (1992), " Viscoplasticity theory based on overstress the modeling of ratcheting and cyclic hardening of AISI type 304 stainless steel ", Nuclear Engineering and Design Vol.133, pp. 401-410.

[54] Calloch, S., Marquis, D., (1999), " Triaxial tension–compression tests for multiaxial cyclic plasticity ", Int. J. Plasticity, Vol. 15, pp. 521-549.

[55] Yoshida, F., (2000), "A constitutive model of cyclic plasticity " Int. J. Plasticity, Vol. 16, pp. 359-380.

[56] Bocher, L., Delobelle, P., Robinet, P., Feaugas, X., (2001) " Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension–torsion-internal and external pressure ", Int. J. Plasticity, Vol. 17, pp. 1491-1530.

[57] Kang, G., Ohno, N., Nebu, A., (2003) "Constitutive modeling of strain range dependent cyclic hardening ", Int. J. of Plasticity, Vo. 19, pp. 1801-1819.

[58] Colak, O., U, Krempl, E., (2004) " A viscoplasticity theory applied to proportional and non-proportional cyclic loading at small strains ", Int. J. Plasticity, Vol. 20, pp. 1387-1401.

[59] Yoshida, F., Uemori, T., (2002) "A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation", Int. J. Plasticity, Vol. 18, pp. 661-686.

[60] Yaguchi, M., Yamamoto, M., Ogata, T., (2002) "A viscoplastic constitutive model for nickel-base superalloy, part 1: kinematic hardening rule of anisotropic dynamic recovery " Int. J. Plasticity, Vol. 18, pp. 1083-1109.

[61] Dieng, L., Abdul-Latif, A., Haboussi, M., Cunat, C., (2005), "Cyclic plasticity modeling with the distribution of non-linear relaxations approach", Int. J. of Plasticity, Vol. 21, pp. 353-379

[62] Cunat, C., (1988), " Thermodynamic treatment of relaxation in frozening system. Universiality of the fluctuation distribution law for relaxation time ", Zeit. Fur Phys. Chem. Neue Folge, pp. 157-419.

[63] Liu, C. S., (2006), " Reconcile the perfectly elastoplastic model to simulate the cyclic behavior and ratcheting ", Int. J. of Solids and Structures, Vol. 43, pp. 222-253.

[64] Valanis, K. C., (1984)," Continuum foundations of Endochronic plasticity ", J. of Eng. Mat. and Tech., Vol. 106, pp. 367-375.

[65] Wu, H. C., and Yip, M. C., (1981), " Endochronic description of cyclic hardening behavior of metallic material ", J. of Eng. Mat. and Tech., Vol. 103, pp. 212-217.

[66] Watanabe, O., and Atluri, S. N., (1986), " Constitutive modeling of cyclic plasticity and creep, using an internal time concept ", Int. J. of Plasticity, Vol. 2, pp. 107-134.

[67] Yeh, W. C., Cheng, J. Y., and Her, R. S., (1994), " Analysis of Plastic Behavior to Cyclically Uniaxial Tests Using an Endochronic Approach ", J. of Eng. Mat. and Tech. ASME, Vol. 116, pp. 62-67.

[68] Lee, C. F., (1984), " Endochronic theory of cyclic plasticity with applications", J. of Applied Mechanics, Vol. 51, pp. 367-374.

[69] Lee, C. F., (1995), "Recent finite element applications of the incremental edochronic plasticity ", Int. J. of Plasticity, Vol. 11, pp. 843-865.

[70] Pan, W. F., and Chern, C. H., (1997), " Endochronic description for viscoplastic behavior of materials under multiaxial loading ", Int. J. of Solids and Structures, Vol. 34, pp. 2131-2160.

[71] Pan, W. F., Chiang, W. J., and Wang C. K., (1999), " Endochronic analysis for rate-dependent elasto-plastic deformation ", Int. J. of Solids and Structures, Vol. 36, pp. 3215-3237.

[72] Wu, H. C., Yao, J. C., and Chu, S. C., (1986), " Investigation of Endochronic constitutive equation subject to plastic strain-controlled axial-torsional deformation ", J. of Eng. Mat. and Tech., Vol. 108, pp. 262-269.

[73] Yeh, W. C., (1995), " Verification of the Endochronic theory of plasticity under biaxial load " J. of the Chinese Institute of Engineers, Vol. 18(1), pp. 25-34.

[74] Yeh, W.C., Ho, C.D., Pan, W.F., (1996), " An endochronic theory accounting for deformation induced anisotropy " Int. J. of Plasticity, Vol. 12, pp. 987-1004.

[75] Yeh, W. C., and Lin, H. Y., (2006), " An Endochronic model of yield surface accounting for deformation induced anisotropy ", Int. J. of Plasticity, Vol. 22, pp. 16-38.

[76] Lee, C. F., (1997), " Intrinsic time measure of Endochronic plasticity with plastic strain induced anisotropy ", The Chinese J. of Mechanics, Vol. 13, pp. 161-174.

[77] Wu, H.C., Yeh, W.C., (1987), " Some consideration in the endochronic description of anisotropic hardening ", Acta Mech., Vol. 69, pp. 59-76.

[78] Yeh, W. C., Cheng, J. Y., and Her, R. S., (1994), " Analysis of Plastic Behavior to Cyclically Uniaxial Tests Using an Endochronic Approach ", J. of Eng. Mat. and Tech. ASME, Vol. 116, pp. 62-67.

[79] Khan, A.S., Wang, X., (1993), " An experimental study on subsequent yield surface after finite shear prestraining ", Int. J. Plasticity, Vol. 9, pp. 889-905.

[80] Ohashi, Y., kawashima, K., Yokochi, M., (1975), " Anisotropy due to plastic deformation of initially isotropic mild steel and its analytical formulation " J. Mech. Phys. Solids, Vol. 23, pp. 277-294.

[81] Ellis, J.R., Robinson, D.N., Pugh, C.E., (1983), " Time dependence in biaxial yield of type 316 stainless steel at room temperature ", J. Eng. Mat. Tech., Vol. 105, pp. 250-256.

[82] Stout, M.G., Martin, P.L., Helling, D.E., Canova, G.R., (1985), " Multiaxial yield behavior of 1100 aluminum following various magnitudes of prestrain ". Int. J. Plasticity, Vol. 1, pp. 163-174.

[83] Cheng, S., Krempl, E., (1991), " Experimental determination of strain-induced anisotropy during non-proportional straining of an Al/Mg alloy at room temperature " Int. J. Plasticity, Vol. 7, pp. 827-846.

[84] Ishikawa, H., Sasaki, K., (1998), " Deformation induced anisotropy and memorized back stress in constitutive model ", Int. J. Plasticity, Vol. 14 (7), pp. 627-646.

[85] Brown, A.A., Casey J., Nikkel Jr., D.J., (2003), " Experimental conducted in the contest of the strain-space formulation of plasticity " Int. J. Plasticity, Vol. 19, pp. 1965-2005.

[86] Wu, P. D., MacEwen, S. R., Lloyd, D. J., Jain, M., Tugcu P., Neale, K. W., (2005), " On pre-straining and the evolution of material anisotropy in sheet metals ", Int. J. of Plasticity, Vol. 21, pp. 723-739.

[87] Kuwabara, T., Yoshida, K., Narihara K., Takahashi, S., (2005), " Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure ", Int. J. Plasticity, Vol. 21, pp. 101-177.

[88] Ishikawa, H., (1997), " Subsequent yield surface probed from its current center ", Int. J. Plasticity, Vol. 13 (6-7), pp. 533-550.

[89] Helling, D.E., Miller, A.K., Stout, M.G., (1986), " An experimental investigation of the yield loci of 1100-O aluminum, 70:30 brass, and an overaged 2024 aluminum alloy after various prestrains ", J. Eng. Mat. Tech., Vol. 108, pp. 313-320.

[90] Williams, J.F., Svensson, N.L., (1970), " Effect of tensile prestrain on the yield locus of 1100-F aluminum ", J. Strain Anal., Vol. 5, pp. 128-139.

[91] Williams, J.F., Svensson, N.L., (1971), " Effect of torsionnal prestrain on the yield locus of 1100-F aluminum ", J. Strain Anal., Vol. 6, pp. 263-272.

[92] Phillips, A., Weng, G.J., (1975), " An analysis study of an experimentally verified hardening law ", J. Appl. Mech., Vol. 42, pp. 375-378.

[93] Eisenberg, M.A., Yen, C.F., (1984), " The anisotropic deformation of yield surfaces ", J. Eng. Mat. Tech., Vol. 10, pp. 431-449.

[94] Kurtyka, T., Zyczkowski, M., (1985), " A geometric description of distortional plastic materials ", Arch. Mech., Vol. 37, pp. 383-395.

[95] Kurtyka, T., (1988), " Parameter identification of a distortional model of subsequent yield surfaces ", Arch. Mech., Vol. 40, pp. 433-454.

[96] Ilyushin, A.A., (1954), " On the relation between stress and small deformation in the mechanics of continuous media ", Prikl. Mat. Mekh., Vol. 18, pp.641-666 (in Russian).

[97] Lensky, V.S., (1960), " Analysis of plastic behavior of metals under complex loading ", In: Lee, E.H., Symonds, P.S. (Eds), Plasticity, Proc. 2nd Symp. Naval Struc. Mech., Brown University, pp. 259-278.

[98] Kurtyka, T., Zyczkowski, M., (1996), " Evolution equations for distortional plastic hardening ", Int. J. Plasticity, Vol. 12, pp. 191-213.

[99] Hill, R., (1948), " A theory of yielding and plastic flow of anisotropic metals ", Proc. Roy. Soc. of London A, Vol. 193, pp. 281-297.

[100] Wu, H.C., Hong, H.K., Lu, J.K., (1995), " An endochronic theory accounted for deformation induced anisotropy ", Int. J. of Plasticity, Vol. 11, pp. 145-162.

[101] Wu, H.C., Hong, H.K., Shiao, Y.P., (1999), " Anisotropic plasticity with application to sheet metals ", Int. J. Mech. Sci., Vol. 41, pp. 703-724.

[102] Baltov, A., Sawczuk, A., (1965), " A rule of anisotropic hardening ", Acta Mech., Vol. 1, pp. 81-92.

[103] Lee, D., Zavrel, F., Jr., (1978), " A generalized strain rate dependent constitutive equation for anisotropic metals ", Acta Metallurgy, Vol. 26, pp. 1771-1780.

[104] Ferron, G., Makkouk, R., Morreale, J., (1994), " A parametric description of orthotropic plasticity in metal sheets ", Int. J. Plasticity, Vol. 17, pp. 703-717.

[105] Barlat, F., Becker, R.C., Hayashida, Y., Maeda, Y., Yanagawa, M., Chung, K., Brem, J.C., Lege, D.J., Matsui, K., Murtha, S.J., Hattori, S.,

[106] Kowalsky, U., Ahrens, H., Dinkler, D., (1999), " Distorted yield surfaces-modeling by higher order anisotropic hardening tensors " Computational Mater. Sci., Vol. 16, pp. 81-88.

[107] Kim, J.B., Yang, D.Y., Yoon, J.W., Barlat, F., (2000), " The effect of plastic anisotropy on compressive instability in sheet metal forming ", Int. J. Plasticity, Vol. 16, pp. 649-676.

[108] Francois, M., (2001), " A plasticity model with yield surface distortion for non proportional loading ", Int. J. Plasticity, Vol. 8, pp. 729-740.

[109] Bron, F., Besson, J., (2004), " A yield function for anisotropic materials application to aluminum alloys ", Int. J. Plasticity, Vol. 20, pp. 937-963.

[110] Cazacu, O., Barlet, F, (2004), " A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals " Int. J. Plasticity, Vol. 20, pp. 2027-2045.

[111] Chung, K., Lee, M.G., Kim, D., Kim, C., Michael, L., Barlat, W.F., (2005), " Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part I: theory and formulation ", Int. J. Plasticity, Vol. 21, pp.861-882.

[112] Kyriakides, S., Corona, E., Miller J.E. (2004), " Effect of yield surface evolution on bending induced cross sectional deformation of thin walled sections ", Int. J. Plasticity, Vol. 20, pp. 607-618.

[113] Shiratori, E. Ikegami, K. and Kaneko, K., (1973), " Subsequent Yield Surface Determined in Consideration of Bauchinger Effect ", Foundations of Plasticity, Edited by Sawczuk, A., Noordnoff, pp. 477-490.

[114] Shiratori, E. Ikegami, K. and Yoshida. F., (1976), " The Subsequent Yield Surface after Proportional Preloading of the Tresca Type Material ", Bulletin of the JSME, 19, pp.1122-1128.

[115] Shiratori, E., Ikegami. K., Yoshida, F., Kaneko. K. and Koike, S., (1976), " The Subsequent Yield Surfaces after preloading under Combined Axial Load and Torsion ", Bulletin of the JSME, Vol. 19, pp. 877-883.

[116] Sandler, I. S., (1978), " On the uniqueness and stability of endochronic theories of material behavior ", J. of Applied Mechanics, Vol. 45, pp. 263-266.

[117] Rivlin, R. S., (1981), " Some comments on the endochronic theory of plasticity ", Int. J. of Solids and Structures, Vol. 17, pp. 231-248.

[118] Valanis, K. C., and Fan, J. (1983), " Endochronic analysis of cyclic elastoplastic strain fields in a notch plate ", J. of Appl. Mech. ASME, Vol. 50, pp, 789-794.

[119] Murakami, H., and Read, H. E. (1989), " A second-order numerical scheme for integrating the endochronic plasticity equations ", Computers and Structures, Vol. 31, pp. 663-672.

[120] Valanis, K. C., and Fan, J. H., (1984), " A numerical algorithm for Endochronic plasticity and comparison with experiment ", Computer and Structures, Vol. 19, pp.717-724.指導教授葉維磬(Wei-Ching Yeh) 審核日期2007-1-2 推文facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤Google bookmarks del.icio.us hemidemi myshare