博碩士論文 88346004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.131.13.194
姓名 翁煥廷(Huahn-Tyng Weng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 污水下水道管網系統規劃設計最佳化模式之研究
(A Study on Optimization Models for sewer Systems Planning and Design)
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 最佳化污水管網系統方案,較符合投資成本效益。傳統人工設計方法,僅能對少數的替代方案評估,無法保證是最佳的設計結果, 啟發電腦化的污水系統規劃設計最佳化模式方面之探討。本研究乃根據經驗工程師規劃設計程序,以系統分析方法,分成兩階段來發展實用的「污水管網系統規劃與設計最佳化模式」: (1) 首先,建置「都市污水下水道系統水力設計最佳化模式(SSOM)」,並發展為通用的水理分析模組。主要係在「固定配置」系統下,求取最小成本管徑與管線坡度,採用0-1整數規劃(MIP)方法建構最佳化模式,運用簡單又有效率的「界限隱式列舉法(BIE)」達成最佳化演算,特別考量的是提供一套設計變數,可因應都市污水管網設計問題,選用各種不同施工工法;(2)接著,建置「污水管網系統配置最佳化模式(SSOM/LH)」,係在「非固定配置」系統下,考量計畫區域的人口、流量、街區和地形等,鋪設廢污水收集及輸送的管網系統,求解最佳化「系統配置」的目標。
SSOM/LH被建構為組合演算模式,先以全列舉法(TE)演算「管網配置」產生程序,結合已發展SSOM通用模組,作為最佳化水力設計程序,並共同執行此篩選求解程序,可同時達成最佳化「管線配置與水力設計」,且保證求解為「全域最佳解」;然而,最佳化搜尋過程,產生「管網配置」的組合數,隨著「人孔階段數」增加,以指數函數關係增加,當系統太龐大時,卻面臨N-P complete問題。為改善以上SSOM/LH之時效性問題,乃應用遺傳演算法(GA)重新建置污水管網系統配置最佳化模式(GA/SSLOM)。GA的演化程序,係採「整個管網系統」為最佳化之演算子代,以「一條染色體」表示「一個系統配置」,二元編碼方式排成一條字串,直接演化此字串參數,得到較佳的系統配結果,可確保更「快速」接近全域的最佳解,但存在可能產生局部最佳解之問題。
本研究首次應用「混合演算法」的概念,建構「2-混合污水管網系統配置最佳化模式」(2-Hybrid SSLOM),將包含上述已發展完成的兩個「污水管網系統配置最佳化模式」之特點,以一個混合執行程式,達成最小成本的目標。最後,經由幾個研究案例之推導,驗證本研究發展的2-Hybrid SSLOM,確實比SSOM/LH更有效率的搜尋得到全域最佳解,未來可發展為污水系統規劃模式,方便使用於解決較複雜管線系統最佳化的問題。
摘要(英) The optimal design of new sewer systems becomes an important issue for the necessary of cost-effectiveness analysis. However the result of traditional design approach is only a very small number of the alternatives can be evaluated; therefore the final design is sometimes deficient and there is no guarantee that it is the best design. This has more inspired the research on computerized optimization models for sewer systems planning and design. In this study, according to the design procedure of experience engineer, the practical Optimization Models for Sewer Systems Planning and Design are developed with system analysis approach and divided into two phases: (1) at first, an urban Sewer System Optimization Model (SSOM) for hydraulic design is established and has become a general module for being applied to hydraulic design, which can be employed to determine the size and slope of the sewer pipes for a “fixed layout” sewer system design problem. The SSOM model uses a 0-1 mixed integer programming (MIP) and an efficient screening algorithm, the bounded implicit enumeration (BIE) algorithm. The particular consideration is to provide a set of design variables for urban sewer system design problems corresponding to the various construction modes; and (2) then the Sewer System Optimization Model for Layout & Hydraulic design
(SSOM/LH) is established to find the optimal “system layout” for an “unfixed layout” sewer system. The goal of the optimal system layout process is to arrange a network of sewer pipes for collecting and transporting the wastewater considering the populations, the discharge flow-rate, street layout and topography of the area. Thus, the SSOM/LH was constructed as a combinatorial model to combine the Total Enumeration (TE) algorithm for a “network layout” generating procedure with the general module of developed SSOM for an optimal hydraulic design procedure. Both of the procedures perform a screening role to achieve the optimization of the “network layout” and “hydraulic design” simultaneously, and ensuring ensure that the solution obtained is globally optimal. However, in the search for optimality, the number of feasible network layout combinations increases exponentially as the number of manholes increases. This would predictably lead to an N-P complete problem if a huge sewer system is planned. To remedy the flaws in SSOM/LH, a genetic algorithm (GA) will be applied to reestablish this optimization model namely GA/SSOM/LH. “one system layout parameter in the GA evolutionary process is coded to represent one chromosome”. The specific coding strings for the “parameters” are then operated directly, resulting in a more efficient search for the optimal sewer system layout and ensuring a solution closer to the global optimum in a ‘fast’ manner. The optimality of GA/SSLOM obtained could possibly be in a local optimum.
In this study, a concept of hybrid algorithm is first applied to establish a Two-Hybrid Sewer System Layout Optimization Model (2-Hybrid SSLOM) involving this couple of developed model’s advantages in a hybrid role for the minimum cost objective. Finally, several of case studies are conducted to verify that this developed 2-Hybrid SSLOM can indeed search for the global optimum solution with the more increased efficiency than SSOM/LH and develop as a future sewer system planning model for the convenience of solving more complicated pipeline system optimization problems.
關鍵字(中) ★ 界限隱式列舉法
★ 遺傳演算法
★ 多階段多選項系統
★ 系統配置
★ 混合演算
★ 水力設計
關鍵字(英) ★ system layout
★ hydraulic design
★ bounded implicit enumeration algorithm
★ hybrid algorithm
★ genetic algorithm
★ multi-stage multi-option system
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
目 錄 Ⅳ
圖 目 錄 Ⅶ
表 目 錄 Ⅸ
第一章 前言
1.1 研究緣起1
1.2 研究目的2
1.3 研究內容2
1.3.1 發展污水下水道系統最佳化「水力設計」模式2
1.3.2 建置污水管網「系統配置」最佳化模式3
1.3.3 運用遺傳演算法建置污水系統配置最佳化模式3
1.3.4 建構「2-混合演算污水管網系統配置最佳化模式」3
第二章 文獻回顧
2.1 國內污水下水道管網系統規劃設計實務5
2.1.1 區域污水下水道綱要計畫規劃準則5
2.1.2 都市污水管網系統計畫設計規範與標準7
2.1.3 標準污水管網系統計畫設計規範16
2.1.4 污水下水道規劃設計最佳化模式實務應用情形26
2.2 污水下水道系統最佳化模式發展概況27
2.2.1 固定配置系統28
2.2.2 非固定配置系統31
2.3 污水管網系統最佳化模式演算法37
2.3.1 污水管網系統非線性規劃模式演算法38
2.3.2 柔性計算求解最佳化模式與發展39
2.3.3 混合演算最佳化模式之應用 42
第三章 研究方法
3.1 污水下水道規劃設計系統分析45
3.2 發展污水管網系統規劃設計最佳化模式46
3.2.1 污水管網系統規劃設計最佳化模式需求與問題資料收集46
3.2.2 污水管網系統規劃與設計問題瞭解與界定46
3.2.3 污水管網系統規劃設計最佳化模式之建立與測試48
3.2.4 污水管網系統規劃設計最佳化模式之應用與執行49
3.2.5 污水管網系統規劃設計最佳化模式之推展與修訂49
3.2.6 發展污水管網系統規劃設計最佳化模式問題解決50
第四章 建立污水下水道規劃設計最佳化模式
4.1 最佳化水力設計模式之建立(SSOM)51
4.1.1 模式之範疇與邊界條件52
4.1.2 模式輸入與輸出資料53
4.1.3 水力設計主導方程式56
4.1.4 揚水站位址之設置60
4.1.5 成本函數61
4.1.6 推導污水下水道最佳化「水力設計」模式65
4.1.7 傳統列舉演算法求解模式72
4.1.8 發展SSOM 實務應用模組78
4.1.9 案例研究分析與討論79
4.1.10 小結88
4.2 建構污水管網「系統配置」最佳化模式(SSOM/LH)90
4.2.1 建置最佳化「系統配置」組合演算模式90
4.2.2 發展 SSOM/LH 最佳化組合演算流程91
4.2.3 案例研究分析與討論92
4.2.4 小結98
第五章 遺傳演算法於污水管網「系統配置」最佳化模式之應用
(GA/SSLOM)
5.1 遺傳演算法之基礎理論99
5.1.1 SCHEMATA Theorem99
5.1.2 模擬模板(Similarity Templates)理論100
5.2 遺傳演算法求解最佳化問題探討101
5.2.1 複製(Reproduction)—主要作用是排序選擇最大值101
5.2.2 交配(Crossover)--主要作用是重新排列組合102
5.2.3 突變(Mutation)--主要作用是重新找答案103
5.3 遺傳演算法於污水管網系統測試104
5.3.1 最短管線測試模型架構104
5.3.2 發展GA/SSLOM106
5.3.3 案例研究分析與討論107
5.4 小結112
第六章 混合演算法於污水管網「系統配置」最佳化模式之應用
(2-Hybrid SSLOM)
6.1 應用混合演算模式之概念113
6.2 建置2- Hybrid SSLOM 模型架構113
6.2.1 建置2- Hybrid SSLOM 基本構想113
6.2.2 測試分析2-Hybrid SSLOM 求解效率116
6.3 發展2-Hybrid SSLOM 模式118
6.3.1 建構2-Hybrid SSLOM 模式118
6.3.2 2-hybrid SSLOM 模式整體效能分析119
6.4 案例研究結果與討論123
6.5 小結125
第七章 SSOM 水力設計模式靈敏度分析
7.1 不滿流水力特性推導127
7.2 圓形管水力特性曲線之應用129
7.3 SSOM 模式靈敏度分析130
7.3.1 最大流量比靈敏度分析130
7.3.2 最大及最小限制流速參數靈敏度測試131
7.4 小結134
第八章 結論與建議
8.1 結論137
8.2 建議138
參考文獻 141
參考文獻 1. Agbenowosi, N. “GIS based Optimal Design of Sewer Networks and Pump Stations. The Master Thesis”, Virginia Polytechnic Institute and State University, Blacks-burg, Va., 199. 1995.
2. Argman, Y., Shamir, U. and Spivak, E., “Design of Optimal Sewerage Systems", Journal of the Enviromental Engineering Division”, ASCE, Vol. 99, No. EE5, pp. 703-715, 1973.
3. Benson, R.E., “Self-Cleaning Slope for Partially Full Sewers”, Journal of the Enviromental Engineering Division, ASCE, Vol. 111, No. 6, pp.925-928, 1985.
4. Calise, S.J., Walters, G.S. and Zimmer, D.T., “Microcomputers and Software Provide Useful Tools for Sewer System Evalution”, Public Work, Vol. 115, No. 7, pp. 61-62, Jul, 1984.
5. Chang, N. B., Y. L. Chen and H. H. Yong “A fuzzy goal regression model for construction cost estimation of municipal waste incinerator”, Journal of System Science, Vol. 27, No. 5, pp. 433-445. 1996.
6. Chang, S. Y. and Liaw, S.L. Bounded Implicit Enumeration for wastewater treatment systems. Journal of Environmental Engineering. ASCE, Vol. 116, No. 5, pp. 910-926. 1990.
7. Chang, S.Y. and Liaw, S.L., “An Efficient Implicit Enumeration Algorithm for Multistage Systems”, for presentation at the TIMS/ORSA Joint National Meeting, New Orleans, LA, May 4-6, 1987.
8. Chang, S.Y., “Optimal Design of Gravity Sewer Systems”, Proceed. Int. AMSE Conf., Minneapolis, August 13-17, 1984.
9. Chang, S.Y., Liaw, S.L., Sale, M.J. and Railsback, S.F., “Method for Generating Hydroelectric Power Development Altermatives”, Internation Association of Hydrological Sciences Third Scientific Assembly, Baltimore, Maryland, May 10-19, 1989.
10. Charalambous, C. and Elimam, A. A., “Heuristic design of sewer networks”, Journal of Environmental Engineering, Vol. 116, No. 6, Nov. / Dec., 181-1199, 1990
11. Dajani, J.S. and Haist, Y., “Capital Cost Minimization of Drainage Networks”, Journal of the Enviromental Engineering Division, ASCE, Vol. 100, No.EE2, pp. 325-337, 1974.
12. Dajani, J.S., Gemmell, R.S. and Morlok, E.K. “Optimal Design of Urban Wastewater Collection Networks”, Journal of Sanitary Engineering Division, ASCE, Vol. 98, No.SA6, pp. 853-867, 1972.
13. Dandy, G. C., and M. Engelhardt, “Optimal Scheduling of Pipe Replacement Using Genetic Algorithms”, J. Water Resour. Plann. Manage, ASCE, Vol.127, No. 4, pp. 214-223. 2001.
14. Deininger, R. A. and Su, S. Y., “Modeling regional wastewater treatment systems”, Water Research. Vol.7, No.4, pp.633-646, 1973.
15. Desher, D.P. and Davis, P.K., “Designing Sanitary Sewers with Microcomputers”, Journal of the Enviromental Engineering Division, ASCE, Vol. 112, No. EE6, pp. 993-1007, 1986.
16. George, T., “Wastewater Engineering: Collection and Pumping of Wasterwater”, Metcalf & Eddy Inc., 1987.
17. Gidley, J.S., “Optimal Design of Sanitary Sewers”, Proceed. 4th conf., ASCE, Boston, MA, USA, Oct. 27-31, 1986.
18. Goldberg, David E. and the University of Alabama., “Genetic Algorithms in Search, Optimization, and Machine Learning”, 1st Ed., Addison-Wesley Publishing Company, Inc., U.S.A. 1989.
19. WPCF Manuals of practice, “Gravity Sanitary Sewer Design and Construction ASCE Manuals and reports on engineering Practice”, No. 60, No. FD-5, 1982.
20. Greene,R., Agbenowosi, N. and Loganathan, G. V., “GIS-based approach to sewer system design”, Journal of Surveying Engineering., Vol. 125, No. 1, Feb., pp. 36-57. 1999.
21. Gupta, A., Mehndiratta, S.L. and Khanna, P., “Gravity Waste water Collection Systems Optimization”, Journal of the Environmental Engineering Division, ASCE, Vol. 109, No. 5, pp.1195-1208, 1983.
22. Gupta, J.M., Agrawal, S.K. and Khanna, P., “Optimal Design of Wastewater Collection Systems”, Journal of the Enviromental Engineering Division, ASCE, Vol. 102, No. EE5, pp. 1029-1041, 1976.
23. Halhal D., Walters G. A., and Savic D. A., “Water Network Rehabilitation with Structured Messy Genetic Algorithms”, J. Water Resour. Plann. Manage., ASCE, Vol. 123, No. 3, pp. 137-146, 1997.
24. Holland M.E., “Computer models of wastewater collection system”, Ph.D. thesis presented to Harvard University, at Cambridge, Mass. 1966.
25. Hsu, C.L., “Computer Aided Design for Large Sewerage Systems”, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering, AIT. 1984.
26. Jain, A.K., Moham, D.M. and Khanna, P., “Modified Hazen-Willians Formula”, Journal of the Enviromental Engineering Division, ASCE, Vol. 104, No. EE1, pp. 137-146, Feb, 1978.
27. John M. Lovinc, P.E., “Sanitary Sewer Design”, Civil Engineering, ASCE, pp. 66-68, June, 1982.
28. Kulkarri, V.S. and Kanna, p., “Pumped Wasterwater Collection System Optimization”, Journal of Enviromental Engineering, Vol. 111, No. 5, pp. 589-601, Oct. 1985.
29. Li, G. and G. S. Matthew, “New Approach for Optimization of Urban Drainage System”, Journal of Environmental Engineering, Vol. 116, No. 5, pp. 927-944, 1990.
30. Liaw, S. L., " Optimization of Sewer System, (I) System Layout ", International Conference on Computer Application in Water Resources, Tamkang University, Vol. 1, pp. 157-164, July, 1991.
31. Liaw S.L. and Lin B.L., “Optimization of sewer system (II): hydraulic design”, Proc. of International Conference on Computer Application in Water Resources, Tamkang University, Taiwan, Vol. 2, pp. 77-84, July, 1991.
32. Liaw, S.L., “Use of Optimization Models in the Design of Wastewater Treatment Systems”, Thesis Presented to University of Missouri, in Partial Fulfillment of the Reguirement for the Degree of Doctor of Philosophy, 1986.
33. Little, K.W., MeCrodden, B.J., " Minimization of Raw Water Pumping Costs Using MILP", Journal of Water Resources Planning and Management, Vol. 115, No. 4, pp. 511-522, July, 1989.
34. Liebman, J.C., “A Heuristic Aid for the Design of Sewer Networks”, Journal of Sanitary Engineering Division, ASCE, Vol. 93, No. SA4, pp. 81-90, 1967.
35. Lin B. L., Wu R. S. and Liaw S. L., “A heuristic approach algorithm for the optimization of water distribution network”, Water Science and Technology, Vol. 36, No. 5, 1996.
36. Little, K.W., MeCrodden, B.J., “Minimization of Raw Water Pumping Costs Using MILP”, Journal of Water Resources Planning and Management, Vol. 115, No. 4, pp. 511-522, July, 1989.
37. Mays, L.W. and Yen, B.C., “Optimal cost Design of Branched Sewer Systems”, Water Resources Research, Vol. 11, No. 1, pp. 37-47, 1975.
38. Mays, L.W., Harry, G., Wenzel, J. and Liebman, J.C., “Model for Layout Design of Sewer Systems”, Journal of Resource Planning and Management Division, ASCE, Vol. 102, No. WR2, pp. 35-53, 1976
39. McKinney, D. C., and M-D. Lin, “Genetic Algorithm Solution of Groundwater Management Models”, Water Resources Research, Vol. 30 , No. 6 , pp. 1897-1906, 1994 ,
40. Merrit, L.B. and Bogan, R.H., “Computer-Base Optimal Design of Sewer System”, Journal of the Enviromental Engineering Division, ASCE, Vol. 99, No. EE1, pp. 35-53, 1973.
41. Mohan, D.M. and Khanna, P., “Modified Formula Gives Better Sewer Design”, Water & Sewage Works, pp. 20-24, 1979.
42. Nzewi, E.U., Gray, D.D. and Houck, M.H., “Optimal Design Program for Gravity Sanitary Sewers”, Civil Engineering Systems, Vol. 2, pp.132-141, 1985.
43. “Optimization Methods Provide Money-Saving Design Data”, Water & Sewage Works, pp. 56-58, Dec, 1987.
44. Orth, H.M., “Model-based Design of Water Distribution and Sewage Systems”, 1nd Ed., John Wiley and Sons, New York, U.S.A.. 1986.
45. Orth, H.M. Nandy, B., and Rabbani, W.I., “Design of Urban Drainage Network by a Combined Dynamic Programming and Branched-and-bound Approach”, Proc. The International Conference on Urban Storm Drainage, Goteborg, pp.655-664, 1984.
46. Pilar Montesinos, Adela G.G., and Jose L. A., “Water Distribution Network Optimization Using a Modified Genetic Algorithms”, Water Resour. RES.,35, 11, pp 3467-3473. 1999.
47. Savic D. A. and Walters G. A., “Genetic Algorithms for Least-Cost Design of Water Distribution Networks”, J. Water Resour. Plann. Manage, ASCE, 123, 2, pp 67-77. 1997.
48. Simpson, A. R., Dandy, G. C., and Murphy L. J., “Genetic Algorithms Compared to Other Techniques for Pipe Optimization”, J. Water Resour. Plann. Manage, ASCE, 120, 4, pp 423-443. 1994.
49. Swamee, P. K., “Design of Sewer Line”, Journal of Environmental Engineering, 127, 9, pp. 776-781. 2001.
50. Tekeli, S. and Belkaya H., “Computerized Layout Generation for Sanitary Sewers”, Jounal of the Enviromental Engineering Division, ASCE, Vol. 112, No. 4, pp. 500-515, Oct, 1986.
51. Thomas, E. and Capone, p.e., “Microcomputers can Aid in Sanitary Sewer System Analysis and Design”, Public Work, Vol. 119, No. 2, pp. 71-74, Feb, 1988
52. Walsh, S., C.B. Linfield, " Least Cost Method Sewer Design ", Journal of the environmental engineering division, ASCE, Vol.99, No.EE3, June, 1973.
53. Weng, H.T. and Liaw, S. L., “An optimization model for sewer hydraulic design base on novel trenchless technology”, Proc. IWA Asia-Pacific Regional Conference, Bangkok, Thailand, 2003.
54. Weng, H.T., and Liaw, S. L., “Establishing an Optimization Model for Sewer System Layout with Applied Genetic Algorithm”, Proc. ISEIS 2004 International Conference on Environmental Informatics, August 25-27, Regina, Saskatchewan, Canada, 2004. (Paper EIA04-068, Vol. 2, pp. 684-693).
55. Weng, H.T., and Liaw, S. L., “A Sewer System Optimization Hydraulic Design Model”, Journal of Environmental Informatics (JEI), Vol.7, No.2, pp. 66-74, 2006.
56. Weng, H.T., and Liaw, S. L., “The Application of a Genetic Algorithm to a Sewer System Layout Optimization Model”, Journal of the Chinese Institute of Environmental Engineering (JCIEE), Paper Reviewing during a Last Revision 2006. (SM-94004).
57. Weng, H.T., and Liaw, S. L., “An Optimization Model for Urban Sewer Hydraulic Design”, Journal of the Chinese Institute of Engineers (JCIE), Vol. 30, 2007.
58. Weng, H.T., and Liaw, S. L., “Establishing an Optimization Model for Sewer System Layout with Applied Genetic Algorithm”, Journal of the Environmental Informatics, Vol. 5, No. 1, pp. 26-35, 2005.
59. Wolfram Research, MathWorldTM the web's most complete mathematical resource created and maintained by Eric W. Weisstein. http://mathworld.wolfram.com/ (accessed Feb. 18, 2005)
60. 國家圖書館,「全國博碩士論文資訊網」,http://etds.ncl.edu.tw/ (2006)
61. 行政院環境保護署,環境白皮書,民國87年版。
62. 歐陽嶠暉,「下水道工程學(三版修訂版)」,長松文化公司,民國89年8月。
63. 台北市政府工務局衛生下水道工程處,「台北市污水下水道系統規劃報告」,民國77年2月。
64. 台北市政府工務局衛生下水道工程處,「第五期分管網工程工程合約」,民國88年12月。
65. 台北市政府工務局衛生下水道工程處,「分支管網設計準則」,民國88年12月。
66. 內政部營建署,「污水下水道設計指南」,民國93年2月。
67. 內政部營建署,「污水下水道管線設計手冊」,民國94年5月。
68. 內政部營建署,「污水下水道第三期建設計畫(92~97年度)」修正計畫核定本,民國94年2月。
69. 歐陽嶠暉等,「台灣下水道發展紀實」,中興工程科技研究發展基金會,民國93年1月。
70. 高正忠、潘子欽,「下水道收集系統配置優選」,2001年海峽兩岸城市環境規劃與管理研討會,2001。
71. 高正忠、潘子欽,「以基因演算法結合二次規劃求解下水道收集系統設計優選模式」,2003年下水道暨免開挖工程實務研討會,2003年9月。
72. 陳鶴文,「柔性計算科學應用於永續性水資源管理之研究」,成功大學環工研究所博士學位論文 , 民國 88 年 10 月。
73. 林碧亮,「自來水管網系統設計最佳化之發展與研究」,中央大學土木工程研究所博士學位論文,民國 88 年 1 月。
74. 邱林鑫, 「動態調配對下水道設計之應用」, 成功大學環工研究所碩士學位論文 , 民國 71 年 5 月。
75. 石志祥,「間斷微分動態調配法對下水道路線、管徑及埋深選擇之應用」,碩士論文,成功大學環境工程研究所,民國72年5月。
76. 郭宏文,「比較動態調配法和線性規劃法於下水道系統設計之應用」,碩士論文,成功大學環境工程研究所,民國71年5月。
77. 林碧亮,「污水下水道最佳系統配置與最佳水力設計模式之建立」,碩士論文,淡江大學水資源暨環境工程研究所,民國79年6月。
78. 許家瑋,「污水下水道輔助規劃設計管理系統之研究」,碩士論文,淡江大學水資源暨環境工程研究所,民國82年6月。
79. 廖述良、許聖哲、林碧亮,「污水下水道系統最佳化程式」,電子計算機於土木水利工程應用論文研討會,民國78年8月。
80. 廖述良,「污水下水道系統電腦輔助規劃與設計」,第五屆下水道技術研討會,民國82年11月。
81. 中興工程顧問社,「高雄市污水下水道規劃總報告及附錄」,高雄市政府工務局下水道工程處,民國78年3月。
82. 翁煥廷等,「小管推進工法首重鑽探」,營建自動化專題報導,民國88年5月。
83. 胡兆康、翁煥廷、王文琦,「適用都市道路管網鋪設小管推進工法施工技術研討」,營建研究院,民國89年3月。
84. 郭振泰等,「下水道科技之整合研究」,第十屆下水道技術研討會,民國89年8月。
85. 翁煥廷等,「小管推進工法首重鑽探」,營建自動化專題報導,財團法人台灣營建研究院,民國88年5月,台灣,台北市。
86. 胡兆康、翁煥廷、王文琦,「適用都市道路管網鋪設小管推進工法施工技術研討」,營建研究院,民國89年3月,台灣,台北市。
87. 廖述良、翁煥廷、余瑞芳、林碧亮、宋淳伍,「都市污水下水道管網系統規劃設計模式之建構,國立中央大學環境工程學刊」,第七期,民國90年2月,台灣,中壢市。
88. 翁煥廷、林碧亮、廖述良,「應用最佳化水力程式規劃大型新開發社區污水管網系統實務探討」,第十一屆下水道及水環境再生研討會,民國90年8月,台灣,台北市。
89. 翁煥廷、林碧亮、盧品仲、廖述良,「應用最佳化水力程式規劃都會區污水管網系統實務探討」,2001年下水道工程實務研討會,民國90年12月,台灣,台北市。
90. 翁煥廷、林碧亮、余瑞芳、盧品仲、廖述良,「應用BIE法最佳化都會區污水管網系統水力程式」,第十四屆環境規劃與管理研討會,民國90年12月,台灣,高雄市。
91. 翁煥廷、林碧亮、盧品仲、廖述良、張崑宗,「城市污水管網系統規劃設計最佳化程式與地理資訊系統實務應用探討」,2001年海峽兩岸環境規劃研討會,民國90年12月,台灣,台南市。
92. 翁煥廷、林碧亮、廖述良,「污水下水道系統最佳化模式之建立與應用」,二十一世紀土木工程技術與管理研討會,民國90年12月,台灣,新竹市。
93. 翁煥廷、林碧亮、盧品仲、廖述良,「都市污水下水道管網系統規劃設計模式之建構」,國立中央大學環境工程學刊,第八期,民國91年6月,台灣,中壢市。
94. 翁煥廷、林碧亮、廖述良,「都會區污水管網系統最佳水力設計模式之研究」,第十五屆環境規劃與管理研討會,民國91年12月,台灣,台北市。
95. 翁煥廷、林碧亮、廖述良,「探討永續發展都市污水下水道系統最佳化模式之應用」,國立中央大學環境工程學刊,第九期,民國92年6月,台灣,中壢市。
96. 翁煥廷、廖述良,「應用列舉法於污水管網系統配置最佳化模式之研究」,第十六屆環境規劃與管理研討會,民國92年12月,台灣,台中市。
97. 翁煥廷、廖述良,「應用遺傳演算法建置污水下水道管網系統配置最佳化模式」,第九屆海峽兩岸環境保護學術研討會,pp156–160,民國93年5月,大陸,西安市。
98. 翁煥廷、廖述良,「應用遺傳演算法於污水管網系統配置最佳化模式之研究」,第十七屆環境規劃與管理研討會,民國93年12月,台灣,台南市。
99. 翁煥廷、廖述良,「污水管網系統配置最佳化模式之研究」,第十屆海峽兩岸環境保護學術研討會,民國94年10月,台灣,台中市。
翁煥廷、廖述良,「混合演算「污水管網系統配置最佳化模式」之研究」,第十八屆環境規劃與管理研討會,民國94年11月,台灣,中壢市。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2006-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明