博碩士論文 88521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:18.222.67.251
姓名 林哲歆(Cha-Shin Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究
(Studies of Si-Based Metal-Semiconductor-Metal Photodetectors with Amorphous/Crystalline Si Heterointerface and Polymer Light-Emitting Diodes with Inorganic Amorphous Electron/Hole Injection Layers)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於光纖通訊蓬勃發展,光纖通訊系統中光檢測器的重要性與日遽增,而矽基材料相對於Ⅲ-Ⅴ族化合物半導體的製程較為簡單且成熟,因此即使本身為非直接能隙材料,仍被廣泛應用於光檢測元件的製作。故本論文首先探討非晶矽/晶質矽異質接面金屬-半導體-金屬矽基光檢測器製程與特性的改善。在論文中,首先針對非晶質矽合金薄膜對金屬-半導體-金屬矽基光檢測器暫態響應的影響做一系統性研究。接著則針對光檢測器在高溫時的漏電流機制做一詳盡的探討。再者,利用自行對準技巧簡化光檢測器的製程,只需一道光罩即可完成元件製作。最後則採用類似量子井的非晶質薄膜結構有效提昇金屬-半導體-金屬矽基光檢測器的靈敏度,此種結構元件即使在相當弱的入射光照射下(0.5微瓦),仍可產生相當高的光電流對暗電流比值,可有效降低元件在操作時的位元錯誤率(bit error rate)。
另外,由於全彩顯示器應用市場廣大,且薄膜電晶體驅動的高分子發光二極體已成為相當重要的發光組件之一,為使薄膜電晶體與高分子發光元件的製程能進一步整合,在本論文中,我們也詳細地探討具非晶質矽基薄膜(薄膜電晶體的主要材料之一)電子與電洞注入層之高分子發光二極體的特性,成功地將有機與無機材料做一應用結合。實驗結果顯示非晶質矽基電子與電洞注入層能取代有機電子與電洞注入層,而提供有機發光層足夠的電子與電洞以利產生輻射性復合而發光。
摘要(英) Abstract
The Si-based metal-semiconductor-metal photodetectors (MSM-PDs) had been extensively studied to improve their performances. Firstly, the effects of trap-states in a composition-graded intrinsic hydrogenated amorphous silicon-germanium (i-a-Si1-xGex:H) film on MSM-PDs’ performances were studied. The experimental results indicated that the fall time of the device transient response could be reduced significantly by employing the i-a-Si1-xGex:H layer. Secondly, the higher dark-current temperature-dependence for trench-electrode Si-based MSM-PD having an i-a-Si:H dark-current suppressing layer had been studied and improved. The poor dark-current temperature-dependence could be improved significantly by reducing the trap-states in the depletion region of the reverse-biased crystalline/amorphous Si heterojunction. Thirdly, an one-mask self-aligned technique was successfully used to fabricate trench (U-grooved)-electrode Si-based MSM-PDs. Only one photolithography mask was needed during fabrication and could drastically facilitate this device to be integrated with other devices. At last, the a-Si:H/a-SiC:H (hydrogenated amorphous silicon carbide) multi-layers were employed to enhance the sensitivity of a MSM-PD. By employing the a-Si:H/a-SiC:H multi-layers, the device dark-current could be suppressed drastically and hence when the device was illuminated under a very weak incident light power (0.5μW), the device photo to dark current ratio ( under 4 V bias voltage) could be 103 times higher than that of conventional one.
Also, in order to investigate the feasibility of combining polymer and inorganic films for LED fabrication, the inorganic p-a-Si:H (or p-a-SiC:H) / n-a-SiCGe:H layers were employed as hole/electron injection layers (HILs/EILs) in the MEH-PPV polymer LEDs (PLEDs). By employing the amorphous HIL/EIL, the PLED’s threshold voltage could be reduced and brightness could be enhanced.
關鍵字(中) ★ 光檢測器 關鍵字(英) ★ MSM-PD
論文目次 Contents
Abstract I
Figure captions XII
Table captions ??? XVI
Chapter 1. Introduction 1
Chapter 2. Effect of trap-states on the performances of MSM-PDs 7
2-1 Device fabrication 7
2-2 Results and discussions 10
Chapter 3. Improving dark-current thermal stability in the trench- electrode MSM-PDs 22
3-1 Dark-current mechanisms 22
3-2 Device fabrication 32
3-3 Experimental results and discussions 32
Chapter 4. Improving fabrication-process of trench-electrode MSM-PDs using self-aligned technique 51
4-1 Device fabrication 51
4-2 Results and discussions 56
Chapter 5. Improving sensitivity of the MSM-PDs using very thin amorphous silicon-alloy quantum-well-like barrier layers 61
5-1 Device fabrication 61
5-2 Results and discussions 61
Chapter 6. Optoelectronic characteristics of polymer LEDs with MEH- PPV and hydrogenated amorphous silicon alloy hetero-interfaces 70
6-1 Device fabrication 70
6-2 Results and discussions 71
Chapter 7. Conclusion and future works 83
References 85
Biography 89
Publication list 90
Appendix : Electrical characteristics of a-SiGe:H thin-film transistors with Sb/Al binary alloy Schottky source/drain contact 92
A-1 Introduction 92
A-2 Device fabrication 93
A-2-1 a-SiGe Schottky diodes 93
A-2-2 a-SiGe TFTs 93
A-3 Results and discussions 94
A-3-1 a-SiGe Schottky diodes 94
A-3-2 a-SiGe TFTs 95
A-4 Conclusion 105
參考文獻 References
[1] P. D. Hodson, R. H. Wallis, J. I. Davies, H. E. Shephard, “InGaAs PIN photodiodes on recessed semi-insulating GaAs substrates.,” IEE Proceedings-Optoelectronics, vol. 135, pp. 2-4, 1988.
[2] K. Wakita, I. Iotaka, K. Mogi, Y. Kawamura, “High-speed AlGaAs multiple quantum well PIN photodiodes,” IEE Electronics Letters, vol. 25, pp. 1533-1534, 1989.
[3] Q. Wada, S. Miura, T. Mikawa, O. Aoki, T. Kiyomga, “Fabrication of monolithic twin-GaInAs PIN photodiode for balanced dual-detector optical coherent receivers,” IEE Electronics Letters, vol. 24, pp. 514-516, 1988.
[4] H. Zimmermann, “Integrated silicon optoelectronics,” Berlin:Springer, 2000.
[5] MRS-Bulletin, “Silicon-based optoelectronics,” vol. 23, 1998.
[6] Ch. Buchal, M. Löken, Th. Lipinsky, L. Kappius, S. Mantl, “Ultrafast silicon based photodetectors,” J. Vac. Sci. Technol. vol. A18, pp. 630-634, 2000.
[7] S. Y. Chou, S. Alexandrou, C. C. Wang, T. Y. Hsiang, “110 GHz Si MSM photodetectors,” IEEE Trans. on Electron Devices, vol. 40, pp. 2145-2146, 1993.
[8] A. K. Sharma, K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, D. R. Myers, “Ion implantation enhanced metal-Si-metal photodetectors,” IEEE Photo. Technol. Lett., vol. 6, pp. 635-638, 1994.
[9] R.A. Street, C.C. Tsai, M. Stutzmann, J. Kakalios, “The role of doping bonds in the transport and recombination of a-Si:Ge:H alloys,” Phil. Mag. vol. B56, pp. 289, 1987.
[10] S. Z. Weisz, M. Gomez, J. A. Muir, O. Resto, R. Perez, Y. Goldstein, B. Abeles, “Reactively sputtered a-Si1-xGex:H alloys with compositional gradient in plane of film,” Appl. Phys. Lett., vol. 52, pp. 634-636, 1984.
[11] N. V. Dong, T. H. Danh, Y. J. Leny, “Dark conductivity and photoconductivity of hydrogenated amorphous Si1-xGex alloys,” J. Appl. Phys., vol. 52, pp. 338-341, 1981.
[12] P. Singh, D. Galley, E. A. Fagen, V. L. Dalal, “Optical and electrical properties of amorphous silicon-germanium alloy films,” Proc. 15th IEEE Photovoltaic Specialist Conference, New York, pp. 912-916, 1981.
[13] G. Nakamura, K. Sato, Y. Yukimoto, “Amorphous solar cells using a-Si:H and a-SiGe:H films,” Jpn. J. Appl. Phys., vol. 21, pp. 297, 1982.
[14] S. Maramatsu, H. Itoh, S. Matsubara, R. Konenkamp, T. Watanabe, K. Azuma, T. Kamiyama, K. Suzuki, T. Shimada, “Correlation between medium range order and film qualities in amorphous silicon germanium alloys,” Tech. Dig. of the PVSEC-5, Japan : Kyoto, pp. 961-964, 1990.
[15] S. Wagner, V. Chu, J. P. Conde, J. Z. Liu, “The optoelectronic properties of a-Si,Ge:H(F) alloys,” J. of Non-Crystalline Solids, vol. 114, pp. 453-458, 1989.
[16] S. Aljishi, Z. E. Smith, S. Wagner, “Optoelectronic properties and the gap state distribution in a-Si,Ge alloys,” Amorphous Silicon and Related Materials, H. Fritzsche, ed. Singapore : World Scientific, pp. 887-938, 1989.
[17] S. Aljishi, S. Jin, L. Ley, S. Wagner, “Thermal equilibrium of surface defects in hydrogenated amorphous silicon-germanium alloys,” Phys. Rev. Lett., vol. 65, pp. 629-632, 1990.
[18] L. H. Laih, J. C. Wang, Y. A. Chen, T. S. Jen, W. C. Tsay, J. W. Hong, “Characteristics of Si-based MSM photodetectors with an amorphous-crystalline heterojunction,” Solid-State Electronics, vol. 41, pp. 1693-1697, 1997.
[19] S. Wataru, I. Atsushi, Y. Shigeharu, A. Masahiro, “Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on- insulator substrate,” Jpn. J. Appl. Phys., vol. 38, pp. 6226-6231, 1999.
[20] L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. on Electron Devices, vol. 45, pp. 2018-2023, 1998.
[21] L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “A U-grooved metal-semiconductor-metal photodetector (UMSM-PD) with an i-a-Si:H overlayer on a [100] P-type Si wafer,” IEEE Photo. Technol. Lett., vol. 10, pp. 579-581, 1998.
[22] St. Kollakowski, U. Schade, E. H. Böttcher, and D. Bimberg, “Fully passivated AR coated InP/InGaAs MSM photodetectors,” IEEE Photo. Technol. Lett., vol. 6, pp. 1324-1326, 1994.
[23] C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “Improving characteristics of Si-based trench-electrode metal-semiconductor-metal photodetectors using self-aligned process,” IEE Proceedings-Optoelectronics, vol. 148, pp. 195-198, 2001.
[24] B. W. Mullins, Soares, S. F. Mcadrle, C. M. Wilson, and S. R. J. Brueck, “A simple high-speed Si Schottky photodiode,” IEEE Photo. Technol. Lett., vol. 3, pp. 360-362, 1991.
[25] C. Z. Wu, “Organic thin-film light-emitting diodes─techniques and application in flat-display,” Electronics Information, vol. 4, pp. 4-12, 1996.
[26] Y. Yang, and A. J. Hegger, “Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling,” Appl. Phys. Lett., vol. 64, pp. 1245, 1994.
[27]Y. Kijima, N. Asai, N. Kishii, and S. I. Tamura, “RGB luminescence from passive-matrix organic LED’s,” IEEE Trans. on Electron Devices, vol. 44, pp. 1222-1228, 1997.
[28]S. Okutsu, To. Onikubo, M. Tamano, and T. Enokida, “Molecular design of hole transport material with various ionization potential for organic light-emitting diode applications,” IEEE Trans. on Electron Devices, vol. 44, pp. 1302-1306, 1997.
[29] Y. A. Chen, C. F. Chiou, W. C. Tsay, L. H. Laih, J. W. Hong, and C. Y. Chang, “Optoelectronic characteristics of a-SiC:H-based P-I-N thin-film light-emitting diodes with low-resistance and high-reflectance n+-a-SiCGe:H layer,” IEEE Trans. on Electron Devices, vol. 44, pp. 1360-1366, 1997.
[30] D. Eward, M. Milleville, G. Weiser, “Optical spectra of glow discharge deposited silicon,” Phil. Mag., vol. B79, pp. 291, 1979.
[31] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 31, pp. 292-294, 1977.
[32] M. Stutzmann, W. B. Jackson, C. C. Tsai, “Annealing of metastable defects in hydrogenated amorphous silicon,” Phys. Rev. B, vol. 34, pp. 63-72, 1986.
[33] C. R. Wronski, D. E. Carlson, R. E. Daniel, “Schottky-barrier characteristics of metal-amorphous-silicon diodes,” Appl. Phys. Lett., vol. 29, pp. 605, 1976.
[34] H. Matsuura, and H. Okushi, “ Schottky barrier junctions of hydrogenated amorphous silicon-germanium alloys,” J. Appl. Phys.vol. 62, pp. 2871-2879, 1987.
[35] H. Mimura, and Y. Hatanaka, “ Carrier transport mechanisms of p-type amorphous-n-type crystalline silicon heterojunctions,” J. Appl. Phys.vol. 71, pp. 2315-2320, 1992.
[36] L. F. Marsal, J. Pallares, and X. Correig, “ Electrical characterization of n-amorphous/p-crystalline silicon heterojunctions,” J. Appl. Phys.vol. 79, pp. 8493-8497, 1996.
[37] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “ Electrical properties of n-amorphous/p-crystalline silicon heterojunctions,” J. Appl. Phys.vol. 55, pp. 1012-1019, 1984.
[38] W. P. Hong, G. K. Chang, and R. Bhat, “ High-performance Al0.15Ga0.85As/In0.53Ga0.47As MSM photodetectors grown by OMCVD,” IEEE Trans. on Electron Devices, vol. 36, pp. 659-662, 1989.
[39] W. A. Wohlmuth, P. Fay, and I. Adesida, “ Dark current suppression in GaAs metal-semiconductor-metal photodetectors,” IEEE Photo. Technol. Lett., vol. 8, pp. 1061-1063, 1996.
[40] W. P. Hong, R. Bhat, C. Nguyen, M. Koza, C. Caneau, and G. K. Chang, “ In0.52Al0.48As/In0.53Ga0.47As MSM photodetectors and HEMT’s grown by MOCVD on GaAs substrates,” IEEE Trans. on Electron Devices, vol. 39, pp. 2817-2818, 1992.
[41] Y. Ebiko, Y. Mishima, and N. Sasaki, “Effect of N2O plasma treatment for polycrystalline silicon TFTs,” Proceeding of Asia Display / IDW’01, pp. 379-382, 2001.
[42] M. Yoneyama, T. Shibata, E. Sano, Y. Kawamura, R. Takahashi, T. Enoki, T. Nagatsuma, and M. Yaita, “ A differential photoconductive AND gate with Be-doped low-temperature-grown InGaAs-InAlAs MQW MSM-PD’s,” IEEE Journal of Quantum Electronics, vol. 33, pp. 1308-1315, 1997.
[43] Y. A. Chen, M. L. Hsu, L. H. Laih, J. W. Hong, and C. Y. Chang, “Characteristics of SiC-based thin-film LED fabricated using plasma-enhanced CVD system with stainless steel mesh,” IEE Electronics Letters, vol. 35, p. 1274-1275, 1998.
[44] C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “High-speed Si-based metal-semiconductor-metal photodetectors with an additional composition-graded i-a-Si1-xGex:H layer,” Solid-State Electronics, vol. 46, pp. 2027-2033, 2002.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2003-6-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明