博碩士論文 88521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.147.46.183
姓名 何建志(Chien-Chih Ho)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深次微米金氧半場效應電晶體元件特性分析暨大訊號模型及其在高頻電路之應用
(The Characteristics and Modeling of the Deep Sub-micron CMOS Device andApplications for RF Circuits Design)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著先進製程之蓬勃發展,金氧半場效應電晶體的尺寸已縮小至奈米級,而較低的製作成本及可將數位和類比電路整合於同一基板的優點使得互補式金氧半場效應電晶體更有吸引力。由於電晶體閘極長度之持續縮減使其在高頻特性獲得大幅的改善,因此矽質互補式金氧半場效應電晶體已被廣泛的建議並使用於無線收發電路。為了達到這些目標,一個準確的元件模型以及詳細的元件特性分析對電路設計者而言是非常重要的。
首先在第二章裡,儘管p型金氧半場效應電晶體有低遷移率的缺點,但其也擁有較低的閃爍雜訊及熱載子效應等優點,可供高頻電路設計另一個極佳的應用解決方案,因此我們以傳統的BSIM3v3大訊號模型為基礎,加上其寄生效應的影響,建立一個0.18微米p型金氧半場效應電晶體高頻大訊號模型,此一大訊號模型可準確模擬元件的直流、高頻與功率特性。並設計一個操作在2.4 GHz之p型金氧半場效應電晶體壓控振盪器作為驗證。
於第三章中,我們針對0.13微米 n型金氧半場效應電晶體做出自我定義的大訊號模型。此利用經驗與數學模式組成的大訊號模型不僅可以精準的預測元件的直流、高頻特性與高功率輸入輸出的行為,且經過雜訊參數P、R、C的逼近後,可以預測此場效應電晶體的雜訊指數。除了需要簡單且準確的元件模型,在本章中將會探討0.13微米電晶體的閘極佈局方式對於元件之高頻與高功率特性,另外,也會研究壓控變容器的閘極佈局方式對其調變範圍與品質因數之影響。
對於射頻電路應用而言,除了元件之高頻及功率特性以外,另一個重要的參數為雜訊特性,元件的低頻閃爍雜訊與高頻熱雜訊對於電路設計皆有關鍵的影響。在第四章中,將會討論電晶體的閘極佈局方式對於元件之雜訊特性的影響,包含相同閘極寬度不同佈局方式、不同閘極寬度、不同閘極長度等方式來探討;並利用不同閘極佈局方式之0.13微米電晶體,實現於5.2 GHz壓控振盪器以討論元件雜訊對於振盪器電路之相位雜訊的影響,其FOM值可改善至–182 dBc/Hz。
在第五章中,利用自行建立之金氧半場效應電晶體高頻大訊號模型來設計不同的0.18微米高頻電路,包含2.4 GHz低相位雜訊p型電晶體壓控振盪器、2.4 GHz/5.2 GHz雙模壓控振盪器、高功率附加效益E類放大器。在p型電晶體壓控振盪器方面,利用p型電晶體組成反轉型壓控變容器並結合螺旋型電感達到在2.4 GHz的振盪頻率下,其相位雜訊在100 KHz的偏移下可低至–101 dBc/Hz且FOM值為–177 dBc/Hz。在雙模壓控振盪器方面,利用控制開關式電晶體之偏壓,調整振盪源使其可操作在2.4 GHz與5.2 GHz之應用。在改善功率附加效益放大器的電路中,使用E類放大器之設計使電壓與電流在同一時間週期內反相,以節省直流功率損耗,此E類放大器於2.4 GHz操作下可提供17.3 dBm輸出功率且功率附加效益為63 %,此外,結合F類驅動級之E類放大器可使波形更理想,並將功率附加效益提升至70 %。
摘要(英) With the technological advances, the MOS device size was already scaling down to the nano dimension. The low cost of fabrication and the possibility of placing both analog and digital circuits on the same chip so as to improve the overall performance made CMOS technology attractive. The scaling down of device improves the speed of MOSFETs significantly and hence the silicon CMOS technologies have been widely recommended and used in the wireless front-end transceiver for its high integration level, low cost, and potential of low-power operation. To achieve these goals, the accurate device model and detailed device characteristics are important for the circuit designers.
Although, the p-channel MOSFETs suffer for their low transport properties; however, the lower 1/f noise level and less hot carrier effect in pMOS may provide an unique solution in microwave circuit design. Therefore, in order to design a rf circuit based on the pMOS, a modified 0.18 ?m pMOS rf large-signal model based on conventional BSIM3v3 model is proposed in the Chapter II, which demonstrated a well prediction of the dc, S-parameters, large-signal characteristics and power performance. We also designed a 2.4 GHz fully integrated pMOS voltage-controlled oscillator to verify our modified rf large-signal model.
In the Chapter IΙI, a self-defined large-signal model for 0.13 ?m nMOS transistor is proposed. The self-defined model can predict not only dc and microwave performance well but also in noise characteristics by using P, R, C noise parameters calculation. Besides the simplified and accurate model of the device is needed, the optimum gate layout of 0.13 ?m transistors for high frequency and power application becomes a critical issue, which is also investigated in this chapter. In addition, the optimum gate layout of n+/n-well MOS varactor for the tuning range and Q factor improvement is also studied in this chapter.
Besides the 0.13 ?m device high frequency and power performances, one of the key features of a technology platform for rf applications is the noise performance, particularly for front-end receiver functions. The noise performance of the optimized gate layout structure in constant total gate-width devices, different gate length and gate width devices are investigated in Chapter IV. We also design two VCOs by different gate layout MOSFETs to verify the phase noise influence from device layout structure.
In the Chapter V, various rf circuits are presented based on the home-made modified rf large-signal model and implemented by 0.18 ?m CMOS technologies, which include low phase noise 2.4 GHz fully integrated pMOS VCO, 2.4 GHz/5.2 GHz dual-band VCO and high power-added efficiency class-E amplifier. The pMOS VCO including inversion-mode varactors and on-chip spiral inductors, achieves an excellent phase noise of –101 dBc/Hz at a 100 KHz offset and figure-of-merit of –177 dBc/Hz. In the dual-band VCO design, the switching transistors concept used in the tank circuit realizes the dual-band VCO operation, which provides the oscillation frequency bands for both 2.4 GHz and 5.2 GHz applications. In the efficient amplifier design, the switching operating mode class-E amplifier delivers 17.3 dBm output power at 2.4 GHz, with a maximum PAE of 63% from a 2-V supply voltage. Furthermore, the class-E amplifier with a class-F driver stage demonstrates the improved maximum PAE of 70%.
關鍵字(中) ★ 金氧半場效應電晶體 關鍵字(英) ★ Modeling
★ CMOS
論文目次 Abstract I
Figure captions VIII
Table captions XII
Chapter I Introduction
I.1 Motivation 1
I.2 Thesis Organization 2
Chapter II The Modified p-MOSFET RF Large-Signal Model
II.1 Introduction 4
II.2 MOSFET Short-Channel Effects 5
II.2.1 Short-channel Vth shift 6
II.2.2 Punch-through and gate-induced drain leakage 8
II.2.3 Hot carrier effect 9
II.2.4 Output impedance variation with drain-source voltage 9
II.3 RF Large-Signal Model for 0.18 ?m PMOS 10
II.4 The Power Performance Prediction of RF Large-Signal Model 16
II.5 PMOS VCO Design and Verification 21
II.6 Summary 22
Chapter III The Characteristics of 0.13 ?m MOSFET
III.1 Introduction 24
III.2 The Self-Defined Empirical 0.13 ?m MOSFET RF Large-Signal Model 26
III.2.1 The extractions of the dc-related parameters and I-V prediction 27
III.2.2 The extractions of the extrinsic components and S-parameters prediction 31
III.2.3 The microwave and power performance prediction 32
III.2.4 The noise performance prediction 34
III.2.5 Conclusion 37
III.3 The 0.13 ?m RF MOSFETs Performance Optimization by Multiple Gate Layouts 37
III.3.1 Experimental measurement set-up 38
III.3.2 MOS device microwave characteristics 38
III.4 The 0.13 ?m Varactors Performance Optimization by Multiple Gate Layouts 43
III.4.1 MOS varactors 43
III.4.2 Characteristics of MOS varactors 44
III.5 Summary 50
Chapter IV The Noise Characteristics of 0.13 ?m MOSFET
IV.1 Introduction 52
IV.2 Experimental Set-up Description 53
IV.3 Noise Figure Characteristic of MOSFET 54
IV.4 Flicker Noise Characteristic of MOSFET 59
IV.4.1 Review of flicker noise theories 59
IV.4.2 Experimental results 61
IV.5 The VCO Phase Noise Improvement by Gate-finger Layout Optimization of 0.13 ?m CMOS Transistors 64
IV.6 Summary 69
Chapter V CMOS RF Circuits Design
V.1 Introduction 71
V.2 2.4 GHz Low Phase Noise Voltage-Controlled Oscillator 73
V.2.1 General considerations 73
V.2.2 LC tank cross-coupled oscillators 76
V.2.3 Phase noise of oscillator 78
V.2.4 2.4 GHz fully integrated low phase noise VCO 84
V.3 Fully Integrated Dual-band VCO 92
V.3.1 Design of the dual-band VCO 92
V.3.2 Characteristics of the dual-band VCO 96
V.4 Fully Integrated Class-E Amplifier 99
V.4.1 Class-E amplifier design 100
V.4.2 Characteristics of CMOS Class-E amplifier 102
V.5 Class-E Amplifier with a Class-F Driver Stage 108
V.5.1 CMOS class-E amplifier design with a class-F driver stage 108
V.5.2 Characteristics of CMOS two stage class-E amplifier 111
V.6 Summary 114
Chapter VI Conclusions 115
參考文獻 [1] H. Iwai, “CMOS technology for RF application,” in Proc. 22nd Int. Conference Microelectronics, Vol. 1, 1999, pp. 27–34.
[2] M. Saito, M. Ono, R. Fujimono, H. animoto, N. Ito, T. Yoshitomi, T. Ohguro, H. S. Momose and H. Iwai, “0.15 ?m RF CMOS technology compatible with logic CMOS for low-voltage operation,” IEEE Trans. on Electron Devices, vol. 45, pp. 737-742, Mar. 1998.
[3] H. S. Momose, T. Ohguro, K. Kojima, S. Nakamura and Y. Toyoshima, “110 GHz cutoff frequency of ultra-thin gate oxide p-MOSFET on [110] surface-oriented si substrate,” in Technical Digest of VLSI Technology, 2002, pp. 156–157.
[4] A. I. A. Cunha, M. C. Schneider and C. G. Montoro, “An MOS transistor model for analog circuit design,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1510-1519. Oct. 1998.
[5] P. Gary and R. Meyer, “Future directions of silicon IC’s for personal communications”, in Proc. Custom Integrated Circuits Conf., pp. 83-90, 1995.
[6] M. Orshansky, J. An, C Jiang, B. Liu, C. Riccobene, and C. Hu, “Efficient generation of pre-silicon MOS model parameters for early circuit design”, IEEE Journal of Solid-State Circuit, vol. 36, pp. 156-159, 2001.
[7] BSIM3v3 Manual, Department of Electrical Engineering and Computer Science, University of California, CA, 1996
[8] J. J. Ou, X. Jin, I. Ma, C. Hu and P. R. Gray, “CMOS rf modeling for GHz communication IC’s”, 1998 Symposium on VLSI Technology Digest, pp. 94-95, 1998.
[9] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal and J. P. Matta, “R.F. MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model”, IEEE IEDM Tech. Digest, pp. 309-312, 1997.
[10] S. Lee and H. K. Yu, “A new extraction method for BSIM3v3 model parameters of rf silicon MOSFETs”, IEEE 1999 Int. Conf. on Microelectronic Test Structures, Vol. 12, pp. 95-98, 1999.
[11] M. C. Ho, K. Green, R. Culbertson, J. Y. Yang, D. Ladwig and P. Ehnis, “A physical large signal Si MOSFET model for rf circuit design”, IEEE MTT-S Digest, pp. 391-394, 1997.
[12] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuit, 2nd ed. New York: Wiley, 1984, p. 666.
[13] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill Inc, New York, 2001.
[14] Y. Tsividis, Operation and modeling of the MOS transistor, McGraw-Hill Inc, New York, 1999.
[15] C. Y. Chang and S. M. Sze, ULSI Technology, McGraw-Hill Inc, New York, 1996.
[16] S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter and B. J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz,” IEEE Trans. Electron Devices, vol. 46, pp. 2217-2227, 1999.
[17] E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y. Katsumata and H. Iwai, “Future perspective and scaling down roadmap for RF CMOS,” in Dig. Tech. Papers VLSI Symp., pp. 163-164, 1999.
[18] Y. H. Wu, A. Chin, C. S. Liang and C. C. Wu, “The performance limiting factors as RF MOSFET’s scaling down,” in Proc. RF-IC Symp., pp. 151-155, 2000.
[19] C. H. Huang, C. H. Lai, J. C. Hsieh, J. Liu and A. Chin, “Rf noise in 0.18-?m and 0.13-?m MOSFETs,” IEEE Microwave and Wireless Components Lett.. vol. 12, pp. 464-466, 2002.
[20] P. H. Woerlee, M. J. Knitel, R. V. Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten and A. T. A. Z. Duijnhoven, “RF CMOS performance trends,” IEEE Trans. Electron Devices, vol. 48, pp. 1776-1782, 2001.
[21] C. S. Kim, H. K. Yu, H. Cho, S. Lee and K. S. Nam, “CMOS layout and bias optimization for RF IC design applications,” IEEE MTT-S Digest, pp. 945-948, 1997.
[22] J. N. Burghartz, M. Hargrove, C. S. Webster, R. A. Groves, M. Keene, K. A. Jenkins, R. Logan and E. Nowak, “RF potential of a 0.18-?m CMOS logic device technology,” IEEE Trans. Electron Devices, vol. 47, pp. 864-870, 2000.
[23] B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-State Circuits, vol. 37, pp.1135-1145, Sept. 2002.
[24] BSIM3v3 manual, Department of electrical Engineering and Computer Sciences, University of California, Berkeley, 1996.
[25] S. Lee and H. K. Yu, “A semianalytical parameter extraction of a SPICE BSIM3v3 for RF silicon MOSFETs using S-parameter”, IEEE Trans. on Microwave Theory and Techniques, vol. 48, pp. 412-416, Feb. 2000.
[26] S. Lee and H. K. Yu, “A new extraction method for BSIM3v3 model parameters of RF silicon MOSFETs”, IEEE Microelectronic Test Structures Conference, pp. 95-98, Feb. 1999.
[27] T. Manku, M. Obrecht and Y. Lin, “RF simulations and physics of the channel noise parameters within MOS transistors”, in Proc. Custom Integrated Circuits Conference (CICC), pp. 369-372, 1999.
[28] F. M. Klaasen, “High frequency noise of the function field-effect transistor”, IEEE Trans. on Electron Devices, vol. 14, no. 7, pp.368-373, 1967.
[29] A. Cappy, A. Vanoverschelde, M. schortgen and G. Salmer, “Noise modeling in submicrometer-gate two dimensional electron-gas field effect transistor”, IEEE Trans. on Electron Devices, vol. 32, no. 11, pp. 2787-2795, 1985.
[30] A. A. Abidi, “High frequency noise measurements on FETs with small dimensions”, IEEE Trans. on Electron Devices, vol. 33, no. 11, pp. 1801-1805, Nov. 1986.
[31] A. J. Scholten, L. F. Tiemeijer, R. V. Langevelde, et al. “Noise Modeling for RF CMOS circuit simulation”, IEEE Trans. on Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003.
[32] B. Wang, J. R. Hellums and C. G. Sodini, “MOSFET thermal noise modeling for analog integrated circuits”, IEEE Journal of Solid-State Circuits, vol. 29, no. 7, pp. 833-835, July 1994.
[33] G. Dambrine, J. P. Raskin, F. Danneville, et al. “High frequency four noise parameters of silicon-on-indulator-based technology MOSFET for the design of low-noise RF integrated circuits”, IEEE Trans. on Electron Devices, vol. 46, no. 8, pp.1733-1741, Aug. 1999.
[34] S. Tedja, J. V. D. Spiegel and H. H. Williams, “Analytical and experimental studies of thermal noise in MOSFET’s”, IEEE Trans. on Electron Devices, vol. 41, pp. 2069-2075, Nov. 1994.
[35] A. Cappy, “Noise modeling and measurement techniques”, IEEE Trans. on Microwave Theory and Techniques, vol. 36, no. 1, pp. 1-10, Jan. 1998.
[36] A. Cappy, W. Heinrich, “High frequency FET noise performance: a new approach”, IEEE Trans. on Electron Devices, vol. 36, no. 2, pp.403-409, Feb 1989.
[37] J. J. Ou, X. Jin, C. Hu and P. R. Gray, “ Submicron CMOS thermal noise modeling from an RF perspective”, in Technical Digest of VLSI Technology, pp. 151-152, 1999.
[38] C. Enz, “MOS transistor modeling for RF integrated circuit design”, in Proc. Custom Integrated Circuits Conference (CICC), pp. 189-196, May 2000.
[39] H. Yoshimura et al., “A CMOS technology platform for 0.13 ?m generation SOC,” Tech. Digest VLSI Symp., pp. 144-145, 2000.
[40] T. Schiml et al., “A 0.13 ?m CMOS platform with Cu/low-k interconnects for system on chip applications,” Tech.Digest VLSI Symp., pp. 101-102, 2001.
[41] T. Schafbauer et al., “Integration of high-performance, low-leakage and mixed signal features into a 100 nm CMOS technology,” in Tech.Digest VLSI Symp., pp. 62-63, 2002.
[42] H. Cho and D. Burk, “A three-step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans. Electron Devices, vol. 38, pp. 1371-1375, 1991.
[43] S. H. Jen, C. C. Enz, D. R. Pehlke, M. Schroter and B. J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10-GHz”, IEEE Trans. Electron Devices, vol. 46, pp. 2217-2227, 1999.
[44] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, 2000.
[45] F. Svelto, P. Erratico, S. Manzini and R. Castello, “A metal-oxide-semiconductor varactor,” IEEE Electron Device Lett., vol. 20, pp. 164-166, 1999.
[46] S. S. Song and H. Shin, “A new RF model for the accumulation-mode MOS varactor,” IEEE MTT-S Digest, pp. 1023-1026, 2003.
[47] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[48] T. Oguro, H. Naruse, H. Sugaya, S. Nakamura, E. Morifuji, H. Kimijima, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata and H. Iwai, “High performance RF characteristics of raised gate/source/drain CMOS with Co salicide,” VLSI Tech. Dig., p.136-137, 1998.
[49] H. S. Momose, R. Fujimoto, S. Otaka, E. Morifuji, T. Ohguro, T. Yoshitomi, H. Kimijima, S. Nakamura, T. Morimoto, Y. Katsumata, H. Tanimoto and H. Iwai, “RF noise in 1.5 nm gate oxide MOSFETs and the evaluation of the NMOS LNA circuit integrated on a chip,” VLSI Tech. Dig., p.96-97, 1998.
[50] A. Chatterjee, et al., IEDM Tech. Dig., p.821, 1997.
[51] H. Fukui, “Optimal noise figure of microwave GaAs MESFETs,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1032-1037, 1979.
[52] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, pp. 654-665, 1990.
[53] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
[54] J. Chang, A. A. Abidi, and C. R. Viswanathan, “ Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures,” IEEE Trans. Electron Devices, vol. 41, pp. 1965-1971, Nov. 1994.
[55] A. L. McWhorter, “1/f noise and germanium surface properties,” in Semiconductor Surface Physics. Philadelphia, PA: Univ. of Pennsylvania Press, 1957, p.207.
[56] A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, pp. 618-632, 2003.
[57] F. N. Hooge, “1/f noise,” Physica, vol. 83B, pp. 14-23, 1976.
[58] R. Jayaraman and C. Sodini, “A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon,” IEEE Trans. Electron Devices, vol. 36, pp. 1773-1782, 1989.
[59] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[60] C. Samori, S. Levantino and V. Boccuzzi, “A –94 dBc/Hz@100kHz, fully-integrated, 5-GHz, CMOS VCO with 18% tuning range for Bluetooth applications,” in IEEE Custom Integrated Circuits Conf., pp. 201-204, 2001.
[61] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phae-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, pp. 1148-1154, July 2003.
[62] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuit, vol. 31, pp. 331-343, 1996.
[63] D. B. Lesson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, Feb. 1966, pp.329-330
[64] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE Journal of Solid-State Circuit, vol. 35, pp. 326-336, 2000.
[65] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 716-724, 1999.
[66] J. Y. Chen, CMOS Devices and Technology for VLSI. Englewood Cliffs, NJ: Prentice-Hall, 1990.
[67] Y. Taur and T. K. Ning, “Fundamentals of modern VLSI Devices,” Cambridge University Press. pp. 188~189, 1998.
[68] K. K. O., N. Park and D. J. Yang, “1/f noise of NMOS and PMOS transistors and their implications to design of voltage controlled oscillators,” IEEE RF IC Sym., pp. 59-62, 2002.
[69] B. D. Muer, M. Borremans, M. Steyaert and G. L. Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[70] J. Craninckx and M. Steyaert, “A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler,” IEEE J. Solid-State Circuits, vol. 30, pp. 1474-1482, 1995.
[71] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, 2001.
[72] C. C. Hsiao, C. W. Kuo, C. C Ho and Y. J. Chan, “2.4 GHz voltage control oscillator and power amplifier monolithic microwave integrated circuits based on 0.25 ?m complementary metal-oxide-semiconductor technologies,” J. Vac. Sci. Technol., pp. 1034-1037, 2002.
[73] C. H. Wu, C. Y. Kuo and S. I. Liu, “Selective metal parallel shunting inductor and its VCO application,” Tech Digest Symposium VLSI Circuits, pp. 37-40, 2003.
[74] S. Vora and L. E. Larson,”Noise power optimization of monolithic CMOS VCOs,” in Digest of IEEE RF IC Symposium, pp.167-170, 1999.
[75] C. M. Hung, B. A. Floyd, N. Park and K. K. O, “Fully integrated 5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. on Microwave Theory and Techniques, vol. 49, pp. 17-22, 2001.
[76] S. M. Yim, K. K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. Custom Integrated Circuits Conference (CICC), pp. 205-208, 2001.
[77] F. Herzel, H. Erzgraber and N. Ilkov, “A new approach to fully integrated CMOS LC-oscillators with a very large tuning range,” in Proc. Custom Integrated Circuits Conference (CICC), pp. 573-576, 2000.
[78] T. Sowlati, C. A. T. Salama, J. Sitch, G. Rabjohn, and D. Smith, “Low voltage, high efficiency GaAs class E power amplifiers for wireless transmitters,” IEEE J. Solid-State Circuits, vol. 30, pp. 1074-1080, Oct. 1995.
[79] Y. Tan, M. Kumar, J.K. O. Sin, L. Shi, and J. Lau, ”A 900-MHz Fully Integrated SOI power amplifier for single-chip wireless transceiver applications,” IEEE J. Solid-State Circuits, vol. 35, pp. 1481-1486, Oct. 2000.
[80] K. L. R. Mertens and M. S. J. Steyaert, “A 700-MHz 1-W Fully Differential CMOS Class-E Power Amplifier”, IEEE Journal of Solid-State Circuit, vol. 37, pp. 137-141, 2002.
[81] C. Yoo, Q. Huang, “A Common-Gate Switched 0.9-W Class-E Power Amplifier with 41% PAE in 0.25-?m CMOS”, IEEE Journal of Solid-State Circuit, vol. 36, pp. 823-830, 2001.
[82] K. C. Tsai and P. R. Gray, “A 1.9-GHz 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962-970, July 1999.
[83] N. O. Sokal and A. D. Sokal, “Class E, a new class of high-efficiency tuned single-ended power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, pp. 168-176, June 1975.
[84] R. E. Zulinsky and J. W. Steadman, “Class E power amplifier and frequency multipliers with finite dc-feed inductance,” IEEE Trans. Circuits Syst., vol. CS-34, pp. 1074-1087, 1987.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2004-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明