博碩士論文 88521019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.137.164.241
姓名 劉維昇(Wei-Sheng Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 長波長砷化銦量子點異質結構與雷射
(Long-Wavelength InAs/GaAs QuantumDot Heterostructures and Lasers)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在利用超高真空分子束磊晶系統,成長高品質之長波長砷化銦量子點異質結構與雷射,並探究其發光特性。
由於成長量子點活性層為研製量子點雷射的關鍵技術,因此如何成長出高品質的量子點活性層,便成了研發量子點雷射最重要的工作。首先我們將量子點的成長著重在量子點成長參數的調校上,包括調校成長速度、溫度、厚度以及成長間歇等參數。藉由將上述量子點成長參數與發光特性最佳化的過程中,我們以原子力顯微鏡以及光激光譜量測發現了量子點高度均勻性對發光特性的重要性,並以長波長量子點雷射證明量子點高度均勻性對雷射元件的重要性。研究結果顯示擁有較均勻量子點高度的量子點脊狀波導雷射,其特性均優於對照組,並可於室溫連續操作於1328奈米。而雷射鏡面雖僅有經過簡單的崩裂製程,卻擁有低臨界電流密度:250 A/cm2,與文獻上經過高反射層鍍膜之相同尺寸雷射相當,相當適合應用於光纖通訊的雷射光源上。
而為能進一步改善長波長量子點雷射的特性,我們對量子點波長延伸的機制,做了詳細的討論,並利用不同材料特性的量子點結構組成來解釋可能的紅移機制。我們發現砷化銦鎵覆蓋層的厚度將會影響紅移的機制,而當覆蓋層的厚度夠薄時,量子點發光波長紅移最主要機制為應力緩衝效應。而若以砷化銦鋁取代砷化銦鎵成為應力緩衝覆蓋於量子點上,由於砷化銦鋁不僅可以抑制銦聚集現象,還可於砷化銦/砷化鎵量子點能帶結構中增加位障高度,所以不僅可以增加量子點的均勻性,更可以增加量子點中載子能態的分離程度。根據此一研究成果,我們研製出具有較大能態分離程度的量子點活性層,此結果將有利於研製高特徵溫度的量子點雷射。
在成功最佳化量子點成長參數,及探究量子點發光波長紅移的物理機制後,我們嘗試成長多層量子點堆疊以提昇雷射元件之增益值。然而研究中卻發現因為砷化鎵間格層與砷化銦量子點之間存在著極大的不匹配性,使量子點活性層中容易形成孔洞狀缺陷。此類缺陷不僅阻礙了均勻量子點的成長,同時將嚴重影響多層量子點堆疊之結晶品質及其發光特性。而欲解決此一問題之方法為在成長砷化鎵間格層時,增加磊晶的成長溫度,並配合一些適當的間歇及高溫熱退火以揮發大顆量子點(缺陷)上方的砷化銦,並提升砷化鎵分子的擴散長度,使其鍵結或沈積於此類缺陷中進而形成平坦的砷化鎵表面,以利多層量子點活性層成長。同時我們亦研製了高品質五層堆疊的1.3微米脊狀波導量子點雷射證明上述方法將可有效消除孔洞狀缺陷。
另外,由於目前在研製長波長量子點雷射上,多在砷化銦量子點上覆蓋一層砷化銦鎵應力緩衝層,以延伸量子點發光波長至1.3微米。然而欲進一步延伸量子點的發光波長至1.5微米,卻往往因為晶格不匹配而於活性層中產生了晶體缺陷,因而降低了量子點的發光效率。除此之外,由於砷化銦鎵應力緩衝層於量子點系統的能態結構中,扮演了載子從量子點內部熱脫逃的媒介。所以此類長波長雷射的熱穩定性,也遠低於理論預期。為改善此問題,我們發現若在應力緩衝層中添加銻成分,使應力緩衝層成為InGaAsSb或是InAlAsSb則可改善量子點活性層的能帶結構。在此研究中,我們探討了應力緩衝層中的銻元素摻雜,對量子點發光強度與熱穩定性的影響。同時我們利用此類含銻化合物成功研製出具有較以往典型量子點活性層,更高的發光效率、熱穩定性及更長波長之量子點活性層。對未來研製高品質量子點光電元件具有極大的助益。
摘要(英) This dissertation is devoted to growing and characterizing high quality long-wavelength InAs quantum dot heterostructures and lasers by an ultra-high vacuum molecular beam epitaxy system.
Since the growth of QD active layers is the key factor to the development of QD lasers, it is most important to study the epitaxy growth of a high quality QD active layer. First, we focus on the modification of the QD growth recipe, including growth rate, temperature, nominal thickness and growth interruption. In the optimization of the QD growth recipe for fine optical properties, the importance of dot-height uniformity to the optical properties is disclosed through the employment of atomic force microscopy and photoluminescence measurement. Long-wavelength QD lasers with different dot-height uniformity are also fabricated to demonstrate the significance of dot-height uniformity in achieving high performance QD lasers. The results reveal that a ridge-type QD laser with high dot-height uniformity shows better characteristics than its counterpart, and can be operated at 1328 nm under room temperature. The threshold current density of this as-cleaved laser is 250 A/cm2 , which is comparable to the reported results obtained with high-reflectivity facet coating and similar ridge sizes, indicating the potential of the QD laser in this work for optical-fiber communication.
In order to further improve the characteristics of the long-wavelength QD laser, we systemically study and clarify the mechanisms of elongated QD emission wavelength within different matrices. It is found that the thickness of the InGaAs overgrown layer would alter the wavelength-extension mechanisms and that strain-reducing effect is more dominant in extending the emission wavelength of QDs when the overgrown layer is thin. We also overgrow an InAlAs layer on the InAs QDs to act as a strain-reducing layer (SRL). Since the InAlAs layer suppresses indium segregation and increases potential barrier height in InAs/GaAs band diagram, uniform dot size and large state separation results are obtained by QDs with an InAlAs overgrown layer. The mechanisms of red-shifted wavelength discussed here could be constructive in realizing long-wavelength QD LDs with high characteristic temperature when operated above room temperature.
After optimizing the QD growth parameters and studying the mechanisms of elongated QD emission wavelength, multi-stack QDs are grown for increasing the modal gain of QD lasers. However, the surface stress caused by lattice mismatch between the InAs and (In)GaAs overgrown layers often results in defects that are detrimental for optical devices. The surface stress would also lead to the formation of pinhole-like defects in the growth of multi-stack QDs. These not only impede the formation of uniform QDs, but also deteriorate the crystal as well as the optical quality of the multi-stack QDs. Growth interruptions during GaAs spacer layer formation and thermal annealing after the GaAs growth are employed to lead to indium-flush behavior and increase the diffusion length of GaAs adatoms for a smooth GaAs surface, and multi-stack quantum dot structures without pinhole-like defects are thus obtained. Based on the investigation, the demonstration of high performance 1.3 um quantum dot lasers with a 5-stack QD active region proves the effectiveness of the novel method in eliminating the pinhole-like defects.
Additionally, the employment of an InGaAs strain-reducing layer is now the most favorable approach for long-wavelength (1.3 um) QD lasers. However, further extending the emission wavelength to 1.5 um always induces misfit dislocations and degrades the radiative efficiency of the QD structure because of lattice mismatch. Besides, since the InGaAs strain-reducing layer acts as a transit channel for facilitating the carriers’ thermal escape from InAs/GaAs QD structure, the thermal stability of this kind of laser at elevated temperatures is therefore far from expected. For improving the characteristics of QDs, we employ InGaAsSb or InAlAsSb instead of typical InGaAs or InAlAs strain-reducing layers, and find it can actually improve the band structure of QD active layer. In this investigation, the influence of Sb incorporation in SRL on QD optical properties and thermal stability is comprehensively studied. Enhanced emission intensity, thermal stability and extended emission wavelength of InAs/GaAs QDs is shown by the use of an Sb-contained strain-reducing layer. The superior optical characteristics of this novel structure make it a promising candidate for high-performance QD optoelectronic devices.
關鍵字(中) ★ 長波長量子點異質結構
★ 量子點
★ 量子點雷射
關鍵字(英) ★ Long-Wavelength Quantum Dot Heterostructure
★ Quantum Dot Laser
★ Quantum Dots
論文目次 論文摘要 II
致謝 IV
Abstract V
List of Figure Captions VIII
List of Table Captions XIII
Chapter 1 Introduction
1.1 Quantum Dot Formation 1
1.2 Quantum Dot Laser 4
1.3 Outline of this Dissertation 10
Chapter 2 Effects of Growth Parameters on the Dot-Height Uniformity and the Performance of 1.3 um InAs Quantum Dot Lasers
2.1 Sample Design of Quantum Dots with Different Dot-Height Uniformity 14
2.2 Experimental and Simulation Results of Dot-Height Uniformity 19
2.2.1 Experimental Results of Quantum Dot Samples 19
2.2.2 Characteristics of Quantum Dot Lasers 31
2.2.3 Simulation Results of the Influence of Dot-Height Uniformity on the Optical Properties of QDs 39
2.3. Conclusion 44
Chapter 3 Optical Properties of Long-Wavelength InAs Quantum Dots with InAlAs/InGaAs Composite Matrix
3.1 Sample Design within Different Matrix 46
3.2 Study of Matrix Dependent Optical Properties 51
3.2.1. Mechanisms of wavelength extension of quantum dots 51
3.2.2. Increased dot uniformity and state separation of QDs with InAlAs overgrown layer 53
3.3 Conclusion 58
Chapter 4 Pinhole-Like Defects in Multi-Stack 1.3 um InAs Quantum Dot Lasers
4.1 Sample Preparation and Characterization 60
4.2 Origin and Elimination of Pinhole-Like Defects 63
4.3 Conclusion 79
Chapter 5 Enhanced Thermal Stability and Emission Intensity of InAs Quantum Dots Covered by InGaAsSb Strain-Reducing Layer
5.1 Sample Design for Studying the Effect of InGaAsSb Capping Layer on Dots 81
5.2 Optical Properties of InGaAsSb Capped Quantum Dots 86
5.3 Conclusion 96
Chapter 6 Enhanced Optical Properties of InAs Quantum Dots Covered by an InAlAsSb Strain-Reducing Layer
6.1 Sample Design for Studying the Effect of an InAlAsSb Capping Layer on Dots 98
6.2 Optical Properties of InAlAsSb Capped Quantum Dots 100
6.3 Conclusions 108
Chapter 7 Summaries and Future Direction
7.1 Summaries 109
7.2 Future Direction 111
Reference 112
List of Publications 120
參考文獻 [1] Y. Arakawa, and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)
[2] Y. Miyamoto, M. Cao, Y. Shinagi, K. Furuya, Y. Suematsu, K. G. Ravikumar, S. Arai, Jpn. J. Appl. Phys. 26, L225 (1987).
[3] H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Electron. Lett. 30, 142 (1994).
[4] F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. Lond. A 198, 205 (1949).
[5] M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).
[6] I. N. Stranski and L. Krastanow, Sitzungsberichte D. Akad. D. Wissenschaften in Wien, Abt. Iib, Band 146, 797 (1937)
[7] L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985)
[8] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
[9] M. Asada, Y. Miyamoto, and Y. Suematsu, J. Quantum Electron. QE-22, 1915 (1986)
[10] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994).
[11] D. Bimberg, N. Kirstaedter, M. Grundmann, N. Kirstaedter, O. G. Schmidt, M.-H. Mao, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, I. Alferov, S. S. Ruvimov, U. Gösele, and J. Heydenreich Jpn. J. Appl. Phys. 35, 1311 (1996).
[12] M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul`nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov and P. Werner, J. Appl. Phys. 83, 5561 (1998).
[13] K. Mukai, M. Sugawara, Appl. Phys. Lett. 74, 3963 (1999)
[14] M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. S. Sizov, Yu. M. Shernyakov, I. N. Kaiander, A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, V. M. Ustinov, and Zh. I. Alferov Phys. Rev. B 62, 16671 (2000)
[15] N.-T. Yeh, T.-E. Nee, and J.-I. Chyi, Appl. Phys. Lett. 76, 1567, (2000)
[16] W.-S. Liu and J.-I. Chyi, J. Appl. Phys. 97, 024312 (2005).
[17] T.-P. Hsieh, P.-C. Chiu, J.-I. Chyi, N.-T. Yeh, W.-J. Ho, W.-H. Chang, and T. M. Hsu, Appl. Phys. Lett. 87, 151903 (2005).
[18] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 73, 2564 (1998).
[19] K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, IEEE Photon. Technol. Lett. 11, 1205 (1999).
[20] Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).
[21] P.G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, Appl. Phys. Lett. 77, 262 (2000).
[22] O. B. Shchekin, J. Ahn, and D. G. Deppe, Electron Lett. 38, 712 (2002)
[23] S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov Appl. Phys. Lett. 85, 5164 (2004).
[24] M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Yu. M. Shernyakov, and A. R. Kovsh, Appl. Phys. Lett. 85, 843 (2004).
[25] I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara Appl. Phys. Lett. 87, 211114 (2005).
[26] X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, IEEE Photon. Technol. Lett., 12, 227 (2000)
[27] G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett., 13, 230 (2000).
[28] F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, Appl. Phys. Lett. 76, 556 (2000).
[29] P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, Appl. Phys. Lett. 77, 262 (2000).
[30] J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdre, and M. Ilegems, J. Appl. Phys. 91, 6710 (2002).
[31] A. Endoh, Y. Nakata, Y. Suggiyama, M. Takatsu and N. Yokoyama, Jpn. J. Appl. Phys. 38, 1085 (1999).
[32] A. Konkar, A. Madhukar and P. Chen, Appl. Phys. Lett. 72, 220 (1997).
[33] C. K. Hahn, J. Motohisa and T. Fukui, Appl. Phys. Lett. 76, 3947 (2000).
[34] H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johnsson, N. Carsson, and W. Seifert, Phys, Rev. Lett. 79, 897 (1997).
[35] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, Phys. Rev. B 62, 10891 (2000).
[36] A. Madhukar, Q. Xie, P. Chen and A. Konkar, Appl. Phys. Lett. 64, 2727 (1994).
[37] J. Tersoff, Phys. Rev. Lett. 81, 3183 (1998).
[38] G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr., Appl. Phys. Lett. 66, 991 (1995)
[39] I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Appl. Phys. Lett. 73, 1841 (1998)
[40] K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, IEEE J. Quantum Electron, 36, 472 (2000).
[41] Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F. Lester, Appl. Phys. Lett. 79, 3570 (2001).
[42] Oleg B. Shchekin, Gyoungwon Park, Diana L. Huffaker, and Dennis G. Deppe, Appl. Phys. Lett. 77, 466 (2000).
[43] S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, Appl. Phys. Lett. 85, 5164 (2004).
[44] David. M. T. Kuo, and Y. C. Chang, Phys. Rev. B, 72, 085334 (2005).
[45] David. M. T. Kuo, and Y. C. Chang, Phys. Rev. B, 61, 11051 (2000).
[46] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Sons Ltd, p184 (1999)
[47] J. Dreybrodt, A. Forchel, and J. P. Reithmaier, Phys. Rev. B 48, 14741 (1993).
[48] H. Saito, K. Nishi, and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998).
[49] Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, Jian Wang, Y. P. Zeng, and H. C. Liu, J. Appl. Phys. 98, 084305 (2005).
[50] Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chye, P. Chen, and S. Tripathy, Appl. Phys. Lett. 86, 031914 (2005).
[51] O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 80, 2758 (2002).
[52] Y. Q. Wei, S.M. Wang, F.Ferdos, J. Vukusic, and A. Larsson, Appl. Phys. Lett. 81, 1621, (2002)
[53] Z. Y. Zhang, B. Xu, P. Jin, X. Q. Meng, Ch. M. Li, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 92, 511 (2002)
[54] R. Jia, D. S. Jiang, H. Y. Liu, Y. Q. Wei, B. Xu, Z. G. Wang, J. Crystal Growth 234, 354 (2002)
[55] M. O. Lipinski, H. Schuler, O. G. Schmidt, and K. Eberl, App. Phys. Lett. 77, 1789 (2000)
[56] M. Arzberger, U. Kasberger, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3968, (1999)
[57] Hongtao Jiang, and Jasprit Singh, Phys. Rev. B 56, 4696, (1997)
[58] T. Benabbas, P. Francois, Y. Androussi, and A. Lefebvre, J. Appl. Phys. 80, 2763, (1996)
[59] I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Appl. Phys. Lett. 73, 1841, (1998)
[60] O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999)
[61] A. Passaseo, V. Tasco, M. De Giorgi, M. T. Todaro, M. De Vittorio, and R. Cingolani App. Phys. Lett. 84, 1868, (2004).
[62] M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, Phys, Rev. B 61, 7595 (2000).
[63] A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Yu. M. Shernyakov, M. V. Maximov, N. N. Ledentsov and D. Bimberg, Electronics Letters, 38, 1104 (2002).
[64] N.-T. Yeh, W.-S. Liu, S.-H. Chen and J.-I. Chyi, MRS Proceedings, Symposium 642, J3.21.1-6, 2001.
[65] L. Jiang, S. S. Li, N. T. Yeh, J.-I. Chyi, C. E. Ross, and K. S. Jones, Appl. Phys. Lett. 82, 1986 (2003).
[66] K. Stewart, M. Buda, J. W. Leung, L. Fu, C. Jagadish, A. S. Roberts, and P. Bhattacharya, J. Appl. Phys. 94, 5283 (2003).
[67] V. A. Shchukin, and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).
[68] Y. G. Chai and R. Chow, Appl. Phys. Lett. 38, 796 (1981).
[69] M. Bafleur, A. Munoz-Yague, and A. Rocher, J. Cryst. Growth 59, 531 (1982).
[70] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, Appl. Phys. Lett. 79, 3615 (2001).
[71] E. C. Le Ru, A. J. Bennett, C. Roberts, and R. Murray, J. Appl. Phys. 91, 1365 (2002).
[72] A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, IEEE Photon. Technol. Lett., 12, 591 (2000).
[73] O. B. Shchekin and D. G. Deppe, IEEE Photon. Technol. Lett., 14, 1231 (2002).
[74] W.-S. Liu, H. Chang, Y.-S. Liu, and J.-I. Chyi, J. Appl. Phys. 99, 114514 (2006).
[75] T.-P. Hsieh, P.-C. Chiu, J.-I. Chyi, N.-T. Yeh, W.-J. Ho, W.-H. Chang, and T. M. Hsu, Appl. Phys. Lett. 87, 151903 (2005).
[76] M. V. Maximov et al., Appl. Phys. Lett. 75, 2347 (1999)
[77] G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, Appl. Phys. Lett. 84, 2058 (2004).
[78] M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, Appl. Phys. Lett. 82, 2646 (2003)
[79] K. Nishi, H. Saito, S. Sugou, and J. S. Lee, Appl. Phys. Lett. 74, 1111 (1999).
[80] J. Tatebayashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 78, 3469 (2001).
[81] X. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, Appl. Phys. Lett. 75, 178 (1999).
[82] H. Shimizu, K. Kumada, S. Uchiyama, and A. Kasukawa, Electron. Lett., 36, 1379 (2000).
[83] Y.-C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, J. Appl. Phys. 94, 2133 (2003).
[84] K. Suzuki, R. A. Hogg, and Y. Arakawa, J. Appl. Phys. 85, 8349 (1999).
[85] Yueming Qiu, David Uhl, and Sam Keo, Appl. Phys. Lett. 84, 263 (2004).
[86] C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Appl. Phys. Lett. 72, 2541 (1998).
[87] T. Matsuura, T. Miyamoto, T. Kageyama, M. Ohta, Y. Matsui, T. Furuhata, and F. Koyama, J. J. Appl. Phys. 43, L82 (2004).
[88] H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, Appl. Phys. Lett. 86, 143108 (2005).
[89] S. D. Wu, L. W. Guo, W. X. Wang, Z. H. Li, X. Z. Shang, H. Y. Hu, Q. Huang, and J. M. Zhou, J. Cryst. Growth 270, 359 (2004).
[90] S. Tiwari and David J. Frank, Appl. Phys. Lett. 60, 630 (1992).
[91] C. E. Pryor and M. E. Pistol, Phys. Rev. B. 72, 205311 (2005).
[92] David. M. T. Kuo, and Y. C. Chang, Phys. Rev. B, 72, 085334 (2005).
[93] David. M. T. Kuo, and Y. C. Chang, Phys. Rev. B, 61, 11051 (2000).
[94] L. Chen, V.G. Stoleru, D. Pan, E. Towe, J. Crystal Growth 242, 263 (2002).
[95] Z. Y. Zhang, B. Xu, P. Jin, X. Q. Meng, Ch. M. Li, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 92, 511 (2002)
[96] R. Jia, D. S. Jiang, H. Y. Liu, Y. Q. Wei, B. Xu, Z. G. Wang, J. Crystal Growth 234, 354 (2002)
[97] Y. Q. Wei, S.M. Wang, F.Ferdos, J. Vukusic, and A. Larsson, Appl. Phys. Lett. 81, 1621, (2002)
[98] T. E. Nee, N. T. Yeh, J.-I. Chyi and C.-T. Lee, Solid-State Electronics 42, 1331, (1998).
[99] H. Y. Liu, B. Xu, J. J. Qian, X. L. Ye, Q. Han, D. Ding, J. B. Liang, X. R. Zhong and Z. G. Wang, J. Appl. Phys. 90, 2048, (2001)
[100] X. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, Appl. Phys. Lett. 75, 178 (1999).
[101] H. Shimizu, K. Kumada, S. Uchiyama, and A. Kasukawa, Electron. Lett. 36, 1379 (2000).
[102] E. C. Le Ru, P. D. Siverns and R. Murray, Appl. Phys. Lett. 77, 2446 (2000).
[103] H. Y. Liu, I. R. Sellers, M. Hopkinson, C. N. Harrison, D. J. Mowbray and M. S. Skolnick, Appl. Phys. Lett. 83, 3716 (2003).
[104] J. F. Chen, R. S. Hsiao, M. F. Hsieh, J. S. Wang and J. Y. Chi, J. Appl. Phys. 99, 014303, (2006)
[105] E. C. Le Ru, J. Fack, and R. Murray, Phys. Rev. B 67, 245318, (2003)
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明