博碩士論文 88522032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.85.245.126
姓名 簡逸聰(Yi-Tsung Chien )  查詢紙本館藏   畢業系所 資訊工程研究所
論文名稱 一個以膚色為基礎之互補人臉偵測策略
(A Complementary Strategy for Skin-color-based Face Detection)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人臉偵測常常作為人臉追蹤與辨識的前置作業,是一個複雜且困難的研究課題,其結果足以影響整個系統的效能。本論文提出一個以膚色為基礎之互補人臉偵測策略。首先在離線時統計人臉膚色的色彩資訊,並且使用一些形態學演算法加以描述。然後當系統從外接設備擷取到影像,便可以根據色彩資訊分離出可能有人臉存在的區域。接著使用兩種功能互補的策略來偵測人臉。第一種策略是新的人臉特徵抽取方法,利用膚色資訊來顯露出臉上的特徵圖樣,並且用一些幾何關係的限制加以過濾。第二種策略是使用可調式搜尋視窗框出可能的人臉候選,此視窗只需在固定解析度的影像上搜尋,可以自動的判斷移動方式並且調整視窗大小。最後是採用主分量分析來確認這兩種策略所找出來的人臉候選。
我們的實驗證明本論文所提出的方法確實可行且可靠,在少許的條件限制下,對於環境採光變化、不同大小之人臉、人臉各種姿勢與表情、人臉有部分被遮蔽、及複雜背景等問題都可以有效的處理。此外,本論文還可以偵測出多個互相交疊的人臉,這是從前以膚色來偵測人臉的研究所無法克服的。
摘要(英) Face detection is a complex and difficult problem. To serve as a prior step in face tracking and recognition, it is the most important process involved. In this thesis, two complementary strategies are presented to detect human faces in images based on skin color information. The proposed system consists of three major parts. The first part is to search for the potential face regions by off-line statistic information of skin color. The second part performs face detection by two strategies with complementary capabilities. The proposed first strategy can quickly extract facial features and choose some of them as the candidate of faces to be confirmed by some effective geometric constraints. In the second strategy, adaptive search window is utilized to locate face candidates. It can determine the moving way and adjust window's size automatically to adapt face region. Lastly, the algorithm of principal component analysis is adopted to verify the candidates of face obtained by the previous processes.
Experimental results reveal the efficiency and feasibility of our proposed approach. Under fewer constrains it can conquer difficulties, such as different lighting conditions, sizes of faces, variable orientations, facial expressions, partial occlusion, and complicated background. Moreover, we can also handle the case of occlusion of multiple faces.
關鍵字(中) ★ 主分量分析
★  人臉偵測
★  以膚色為基礎之人臉特徵抽取
★  可調式搜尋視窗
★  膚色區域切割
關鍵字(英) ★ adaptive search window
★  face detection
★  human skin color segmentation
★  principal component analysis
★  skin-color-based facial feature extraction
論文目次 目錄...........................................................I
圖形目錄......................................................IV
表格目錄....................................................VIII
第一章 緒論...................................................1
1.1 研究動機...............................................1
1.2 相關研究...............................................2
1.3 系統概觀...............................................4
1.4 論文架構...............................................5
第二章 人臉膚色之色彩系統.....................................7
2.1 人臉膚色之統計與描述...................................7
2.1.1 人臉膚色之色彩空間...............................7
2.1.2 人臉膚色之統計...................................9
2.1.3 以形態學為基礎之人臉膚色描述....................11
2.2 膚色區域之轉換與切割..................................18
2.2.1 膚色區域之轉換..................................18
2.2.2 膚色區域之切割..................................20
第三章 兩種互補的人臉偵測策略................................23
3.1 以膚色為基礎之人臉特徵抽取............................24
3.1.1 在二元影像中之人臉特徵抽取......................24
3.1.2 人臉特徵的幾何結構之限制........................26
3.1.3 人臉候選之旋轉校正..............................31
3.2 可調式搜尋視窗........................................33
第四章 主分量分析............................................37
4.1 主分量分析之訓練階段..................................39
4.1.1 人臉訓練樣本之正規化............................39
4.1.2 K-L展開式.......................................41
4.2 主分量分析之確認階段..................................44
4.3 主分量分析之效能評估..................................45
4.3.1距離門檻值.......................................46
4.3.2 特徵向量之使用個數..............................48
4.3.3人臉訓練樣本之大小...............................50
4.3.4 人臉訓練樣本之數目..............................51
第五章 實驗結果與討論........................................52
5.1 實驗一:不同色彩空間對系統效能之影響..............53
5.2 實驗二:可處理之人臉偵測問題......................57
5.3 實驗三:系統安全性之分析..........................65
第六章 結論與未來之研究......................................66
6.1 結論..............................................66
6.2 未來之研究........................................68
參考文獻......................................................69
附錄A 主分量分析之人臉訓練樣本...............................71
附錄B 主分量分析之人臉測試影像...............................75
附錄C 主分量分析之非人臉測試影像.............................78
參考文獻 [1] M. Turk and A. Pentland, “ Eigenfaces for recognition”,
Journal of Cognitive Neuro-science, vol.3, no.1, pp.71-86,
1991.
[2] K. K. Sung and T. Poggio, “Example-based learning for view-
based human face detection”, in Proc. Image Understanding
Workshop, pp. 843-850, Monterey, Calif., Nov. 1994.
[3] T. K. Leung, M. C. Burl, and P. Perona, “Finding faces in
clustered scenes using random labeled graph matching”, in
Proc. Computer Vision and Pattern Recognition, pp.637-644,
Cambridge, Mass., Jun. 1995.
[4] H. A. Rowley, S. Baluja, and T. Kanade, “Human face
detection in visual scenes”, Tech. Rep. CMU-CS-95-158R,
Carnegie Mellon University, 1995.
[5] S. Y. Lee, Y. K. Ham, and R. H. Park, “Recognition of
human front faces using knowledge-based feature extraction
and neuro-fuzzy algorithm”, Pattern Recogntion, vol.29,
no.11, pp.1863-1867, 1996.
[6] P. Juell and R. Marsh, “A hierarchical neural network for
human face detection”, Pattern Recognition, vol.29, no.5,
pp.781-787, 1996.
[7] K. Sobottka and I. Pitas, “Extraction of facial regions
and features using color and shape information”, in Proc.
13th International Conference on Pattern Recognition,
pp.421-425, Vienna, Austria, Aug. 1996.
[8] H. Wu, Q. Chen, and M. Yachida, “A fuzzy-theory-based face
detector”, in Proc. 13th International Conference on
Pattern Recognition, pp.406-410, Vienna, Austria, Aug. 1996.
[9] S. H. Jeng, H. Y. Mark Liao, C. C. Han, M. Y. Chern, and Y.
T. Liu, “An efficient approach for facial feature
detection using geometrical face model”, to appear in
Pattern Recognition, 1997.
[10]C. C. Han, H. Y. Mark Liao, G. J. Yu, and L. H. Chen,
“Fast face detection via morphology-based pre-processing”,
in Proc. 9th International Conference on Image Analysis and
Processing, Florence, Italy, September 17-19, 1997, Lecture
Notes in Computer Science, vol. 1311, pp.469-476.
[11]C. H. Lin and K. C. Fan, “Triangle-based approach to the
detection of human faces”, accepted and to appear in
Pattern Recognition, vol.34, no.6, June 2001.
[12]I. S. Hsieh and K. C. Fan, “A statistic approach to the
detection of human faces in color nature scene”, submitted
to Pattern Recognition.
[13]M. Kirby and L. Sirovich, “Application of the Karhunen-
Loe've procedure for the characterization of human faces”,
IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol.12, pp.103-108, 1990.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2001-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明