博碩士論文 88542002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.225.98.116
姓名 陳建儒(Jian-Ru Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以資料隱藏為基礎之視訊版權保護與強健性傳輸
(Data Hiding-based Video Copyright Protection and Error Resilient Transmission)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 基於梯度的重構攻擊在隱私權保護聯合學習中的評估方法初探★ 利用掌紋作個人身份之確認
★ 利用色彩統計與鏡頭運鏡方式作視訊索引★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類
★ 筆劃特徵用於離線中文字的辨認★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於資料數位化的發展以及網路的流行,資料可以用數位的方式儲存和傳輸,數位多媒體比以往類比式多媒體的優點是容易儲存、複製,而且複製品與原品一模一樣。透過網路,人們對於資訊的取得變得方便又迅速,傳遞也變得更容易。雖然人們可藉著網路下載數位資訊來使用,然而數位化的資訊極易被竄改與複製,這其中便牽涉到智慧財產權的侵權問題,因此數位資訊保護的相關問題便因應而生,因為網路的流行而成為相當熱門的研究課題。
另外,視訊透過網路傳遞很方便,但是在傳輸的過程中經常發生封包遺失的情形。在wireless環境中,由於視訊的傳輸經常會遭遇雜訊干擾與通訊頻道擁塞等問題,導致傳輸的視訊收看品質會遽烈降低。
在本論文我們提出因應視訊在網路傳輸面臨問題的解決方法。主要目的有二:一、對視訊做版權的保護。二、對視訊發展強健性傳輸技術。
在視訊的版權技術方面,我們提出一個強健性的視訊浮水印技術,滿足浮水印透明性、即時性的浮水印偵測、bit-rate 保持不變、在壓縮域(VLC domain)的處理等等的要求。為滿足浮水印即時性的偵測的需求,在崁入時,我們的方法是直接在VLC 域上作處理,因此在作浮水印偵測時,也是直接在VLC域作即時性的偵測。另外為了處理 copy attack 與 collusion attack, 我們提出 video frame-dependent watermark (VFDW)方法,對於copy attack 與 collusion attack 具有良好的抵抗能力。
在視訊強健性傳輸技術方面,我們提出一個以hash為基礎的強健性的視訊傳輸技術。我們提出hash定義,此hash用來描述被參考的區塊(block)。當視訊在作壓縮時,把被參考的區塊的hash崁入視訊中。一旦視訊的封包遺失,則使用者端可將原先藏在視訊中的hash取出,利用hash來幫助作視訊的修補。此外, 我們也提出2階段式的hash比對方法,與結合hash資訊的side-match方法。從實驗上來看,我們的方法在burst packet lose的環境中具有良好的抵抗能力。
摘要(英) Due to the rapid development of network in the past decade, a large number of multimedia data have been stored and transmitted via network.
Digital multimedia is much superior to analog data because it can easily copy without losing any quality.
However, this superiority is also a drawback because digital multimedia could be easily tampered with, duplicated or distributed.
As a consequence, the intellectual property protection problem has become an urgent issue in the digital world.
In addition, it is very easy and convenient to transmit the digital video over network.
However, video transmission usually suffers interference and bandwidth congestion seriously under wireless network environment.
The reconstructed quality will degrade drastically.
Therefore, robust video transmission becomes an important issue.
In this thesis, we proposed two research topics including video copyright protection and robust video transmission.
For video copyright protection, we proposed a robust video watermarking scheme.
Some video watermarking issues, including compressed domain watermarking, real-time detection, bit-rate control, and resistance to watermark estimation attacks, will be satisfied.
In the embedding process, our algorithm is designed to operate directly in the variable length codeword (VLC) domain.
In addition, the watermark detection is also to operate directly in the variable length codeword (VLC) domain to satisfy the requirement of real-time detection.
For bit-rate control, we describe how watermark signals can be embedded into compressed video while keeping the desired bit-rate nearly unchanged.
In particular, in order to deal with both collusion and copy attacks that are fatal to video watermarking, the video frame-dependent watermark (VFDW) is presented.
From the experiment result, our video watermarking scheme is robust to collusion and copy attack, simultaneously.
For video transmission, error concealment is adopted at decoder when video data is corrupted or lost.
In general, error concealment exploits the smoothness of the corrupted block boundary for data recovery.
It is a kind of side-matching.
In other words, side-matching is dominanted by the boundary smoothness instead of the block content.
We propose a data hiding-based hash matching scheme to estimate the lose motion vector for concealment at decoder.
The proposed video block hash is used to describe the reference block.
In the encoder side, the hash of each reference block is hidden into video itself.
Therefore, decoder can extract the hash for error concealment when packets are lost.
Furthermore, we propose the two-stage hash matching procedure for searching the content-based candidate blocks.
In addition, the extracted hash can be adopted in side-matching process for finding the final candidate block.
From the experimental results, the video quality is improved under the burst packet lose environment.
關鍵字(中) ★ 浮水印
★ 版權保護
★ 強健性傳輸
★ 資料隱藏
關鍵字(英) ★ copyright protection
★ watermarking
★ data hiding
★ error resiliece
論文目次 Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Organization of the Dissertation . . . . . . . . . . . . . . . . . 5
2 Data Hiding and Media hash 6
2.1 Data Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Media Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Real-Time Frame-Dependent VideoWatermarking in VLC Domain . . . . . . . 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 MPEG-2 Bitstream Watermarking . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Video Watermarking in the VLC Domain . . . . . . . . . . . . . . . . 16
3.3.2 Macroblock-based video watermarking . . . . . . . . . . . . . . . . 18
3.3.2.1 Video Watermark Embedding . . . . . . . . . . . . . . . . . . . . 20
3.3.2.2 Video Watermark Extraction . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Bit-Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Video Frame-Dependent Watermark . . . . . . . . . . . . . . . . . . . 26
3.4.1 Watermark Estimation Attack . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Frame Hash and Video Frame-dependent Watermark . . . . . . . . . . . 27
3.4.3 Properties of the VFDW . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 Resistance to WEA . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Bit-Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Fidelity of Stego Video Sequences . . . . . . . . . . . . . . . . . 34
3.5.3 Resistance to Incidental Video Attacks . . . . . . . . . . . . . . . 34
3.5.4 Resistance to Malicious Video Attacks . . . . . . . . . . . . . . . 37
3.5.4.1 Resistance to I-Frame Dropping . . . . . . . . . . . . . . . . . . 38
3.5.4.2 Resistance to Watermark Estimation Attacks . . . . . . . . . . . . 40
VFDW Resistance to the Collusion Attack. . . . . . . . . . . . . . . . . . 40
VFDW Resistance to the Copy Attack . . . . . . . . . . . . . . . . . . . . 42
3.5.5 Real-Time Detection . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Media Hash-based Error-Resilient Video Transmission . . . . . . . . . . 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.1.1 Encoder-Level . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.1.2 Transport-Level . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.1.3 Decoder-Level . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.1.4 Data Hiding-based . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.1.5 Side Information-based . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Our Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Proposed Video Block Hashing . . . . . . . . . . . . . . . . . . . . . 54
4.3 Proposed Media Hashed Error-Resilient Video Transmission . . . . . . . 57
4.3.1 Block Hash Hiding . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1.1 Analysis of Distortions Caused by Hash Embedding . . . . . . . . . 59
4.3.2 Media Hash Extraction and Matching at Decoder . . . . . . . . . . . 59
4.3.3 Two-Stage Hash Matching at Decoder . . . . . . . . . . . . . . . . . 61
4.4 Analysis of Error Recovery for Media Hash-based Error Resilience and
Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Error Resilience of Our Method . . . . . . . . . . . . . . . . . . . 63
4.4.2 Error Resilience of FEC . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Our Method vs. FEC . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Conclusion and FutureWorks . . . . . . . . . . . . . . . . . . . . . . . 80
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
參考文獻 [1] ISO/IEC 11172-2:1993, “Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1.5Mbit/s,” Part 2: Video.
[2] ISO/IEC 13818-2:2000, “Information technology – Generic coding of moving pictures
and associated audio information” :Video.
[3] ISO/IEC 11172-2:1993, “ISO/IEC 14496-2:2004. Information technology – Coding
of audio-visual objects,” Part 2: Visual.
[4] ITU-T (formerly CCITT) Recommendation H.263 Version 2 (H.263+), “Video
Coding for Low Bitrate Communication,” 1998.
[5] “Draft ITU-T recommendation and final draft international standard of joint video
specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC,” in Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.
[6] http://iphome.hhi.de/suehring/tml/download/old jm/jm96.zip.
[7] A. Aaron, S. Rane, and B. Girod, “Wyner-Ziv Video Coding with Hash-based Motion
Compensation at the Receiver,” Proc. IEEE Int. Conf. on Image Processing,
2004.
[8] I. Agi and L. Gong, “An empirical study of secure MPEG video transmissions,”
Proc. Internet Society Symp. Network and Distributed System Security, pp. 137-
144, 1996.
[9] A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital Watermarking of Low Bit-Rate
Advanced Simple Profile MPEG-4 Compressed Video,” IEEE Trans. on Circuits
and Systems for Video Technology, Vol. 13, No. 8, pp. 787-800, 2003.
[10] S. Arena, M. Caramma, and R. Lancini, “DigitalWatermarking Applied toMPEG-
2 Coded Video Sequences Exploiting Space and Frequency Masking,” Proc. IEEE
Int. Conf. on Image Processing, 2000.
[11] E. Ayanoglu, R. Pancha, A. R. Reibman, and S. Talwar, “Forward Error Control
forMPEG-2 Video Transport in aWireless ATMLAN,” ACM/BaltzerMobile Networks
and Applications, Vol. 1, No. 3, pp. 245 258, 1996.
[12] S. Baudry and P. Nguyen and H. Maita, “Channel coding in video watermarking:
use of soft decoding to improve the watermark retrieval,” Proc. IEEE Int. Conf. on
Image Processing, 2000.
[13] M. Chen, Y. He, and R. L. Landgelijk, “A Fragile Watermark Error Detection
Scheme for Wireless Video Communications,” IEEE Trans. on Multimedia, Vol.
7, No. 2, pp. 201-211, 2005.
[14] H. Cheng and X. Li, “Partial Encryption of Compressed Images and Videos,” IEEE
Trans. on Signal Processing, vol. 48, pp. 2439-2451, Aug. 2000.
[15] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking
for Multimedia,” IEEE Trans. on Image Processing, Vol. 6, pp. 1673-
1687, 1997.
[16] I. J. Cox, M. L. Miller, and J. A. Bloom, “Digital Watermarking,” Morgan Kaufmann
Publishers, 2002.
[17] J. Dittmann, M. Stabenau, and R. Steinmetz, “Robust MPEG Video Watermarking
Technologies,” Proc. ACM Multimedia, Bristol, UK, 1998.
[18] J. Fridrich, “Visual Hash for Oblivious Watermarking,” Proc. SPIE: Security and
Watermarking of Multimedia Contents II, 2000.
[19] F. Hartung and B. Girod, “Watermarking of Uncompressed and Compressed
Video,” Signal Processing, Vol. 66, No. 3, pp. 283-302, 1998.
[20] F. Hartung and M. Kutter, “Multimedia Watermarking Techniques,” Proceedings
of the IEEE, Vol. 87, pp. 1079-1107, 1999.
[21] C. Y. Hsu and C. S. Lu, “A Geometric-Resilient Image Hashing System and Its
Application Scalability,” Proc. ACM Multimedia and Security Workshop, pp. 81-
92, Magdeburg, Germany, 2004.
[22] IEEE Int. Conf. on Multimedia and Expo: special session on Media Identification,
June 2004.
[23] T. Kalker, G. Depovere, J. Haitsma, and M. Maes, “A VideoWatermarking System
for Broadcast Monitoring,” Proc. of the SPIE, Vol. 3657, pp. 103-112, 1999.
[24] D. R. Kim and S. H. Park, “A Robust Video Watermarking Method,” Proc. IEEE
Int. Conf. on Multimedia and Expo, 2000.
[25] M. Kutter, S. Voloshynovskiy, and A. Herrigel, “The Watermark Copy Attack”,
Proc. SPIE: Security and Watermarking of Multimedia Contents II, Vol. 3971,
2000.
[26] G. C. Langelaar, R. L. Lagendijk, and J. Biemond, “Real-Time Labeling ofMPEG-
2 Compressed Video,” Journal of Visual Communication and Image Representation,
Vol. 9, No. 4, pp. 256-270, 1998.
[27] G. C. Langelaar and R. L. Lagendijk, “Optimal Differential Energy Watermarking
of DCT encoded Images and Videos,” IEEE Trans. on Image Processing, Vol. 10,
No. 1, pp. 148-158, 2001.
[28] M. Lee, S. Nepal, and U. Srinivasan, “Role of Edge Detection in Video Semantics,”
Proc. ACS Conferences in Research and Practice in Information Technology, Vol.
22, pp. 59-68, 2003.
[29] B. Li, E. Chang, and C. T. Wu, “DPF – A Perceptual Distance Function for Image
Retrieval,” Proc. IEEE Int. Conf. on Image Processing, 2002.
[30] C. Y. Lin and S. F. Chang, “A Robust Image AuthenticationMethod Distinguishing
JPEG Compression from Malicious Manipulation,” IEEE Trans. on Circuits and
Systems for Video Tech., Vol. 11, No. 2, pp. 153-168, 2001.
[31] C. Y. Lin, D. Sow, and S. F. Chang, “Using Self-Authentication-and-Recovery Images
for Error Concealment in Wireless Environments,” SPIE ITCom/OptiComm,
Denver, CO, Vol. 4518, 2001.
[32] Y. J. Liang, J. G. Apostolopoulos, and B. Girod, “Analysis of Packet Loss for Compressed
Video: Does Burst-length Matter?” Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing , 2003.
[33] J. Linnartz and J. C. Talstra, “MPEG PTY-Marks: Cheap Detection of embedded
Copyright Data in DVD-Video,” ESORICS98., 1998.
[34] C. S. Lu, “Wireless Multimedia Error Resilience via A Data Hiding Technique,”
Proc. 5th IEEE Int.Workshop onMultimedia Signal Processing, US Virgin Islands,
USA, 2002.
[35] C. S. Lu and C. Y. Hsu, “Content-dependent Anti-Disclosure Image Watermark”,
Proc. Int. Workshop on Digital Watermarking, LNCS 2939, pp. 61-76, Seoul, Korea,
2003.
[36] C. S. Lu and H. Y. Mark Liao, “Structural Digital Signature for Image Authentication:
An Incidental Distortion Resistant Scheme,” IEEE Trans. on Multimedia,
Vol. 5, No. 2, pp. 161-173, 2003.
[37] C. S. Lu, J. R. Chen, and K. C. Fan, “Resistance of Content-dependent Video
Watermarking to Watermark-Estimation Attacks,” Proc. IEEE Int. Conf. on Communications,
pp. 1386-1390, France, 2004.
[38] C. S. Lu, C. Y. Hsu, S. W. Sun, and P. C. Chang, “Robust Mesh-based Hashing for
Copy Detection and Tracing of Images,” Proc. IEEE Int. Conf. on Multimedia and
Expo, Taipei, Taiwan, 2004.
[39] C. S. Lu, S. W. Sun, and P. C. Chang, “Robust Mesh-based Content-dependent
Image Watermarking with Resistance to Both Geometric Attack and Watermark-
Estimation Attack,” Proc. SPIE: Security, Steganography, and Watermarking of
Multimedia Contents VII (EI120), San Jose, California, USA, 2005.
[40] C. S. Lu and C. Y. Hsu, “Geometric Distortion-Resilient Image Hashing Scheme
and Its Applications on Copy Detection and Authentication,” ACM Multimedia
Systems Journal, special issue on Multimedia and Security, Vol. 11, No. 2, pp.
159-173, December 2005.
[41] IEEE Int. Workshop on Multimedia Signal Processing, special session on Media
Recognition, 2002.
[42] I. Moccagatta, A. Soudagar, J. Liang, and H. Chen, “Error-Resilient Coding in
JPEG-2000 and MPEG-4,” IEEE Journal on Selected Area in Communications,
Vol. 18, No. 6, pp. 899 914, 2000.
[43] ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2v12.zip.
[44] F. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information Hiding: A Survey,”
Proc. of the IEEE, Vol. 87, pp. 1062-1078, 1999.
[45] W. Pongpadpinit and A. Pearmain, “Recovery of Motion Vectors for Error Concealment
Based on an Edge-Detection Approach,” IEE Proc.-Vis. Image Signal
Process.,, Vol. 153, No. 1, pp. 63-69, Feb. 2006.
[46] R. Puri, K. Ramchandran, K. W. Lee, and V. Bharghavan, “Forward Error Correction
(FEC) Codes BasedMultiple Description Coding for Internet Video Streaming
and Multicast,” Signal Processing: Image Communication, Vol. 16, pp. 745-762,
May 2001.
[47] L. Qiao and K. Nahrstedt, “Comparison ofMPEG encryption algorithms,” Comput.
Graph., Vol. 22, no. 4, pp. 437-448, 1998.
[48] K.C. Roh, K.D. Seoa, and J.K. Kim “Data Partitioning and Coding of DCT Coefficients
Based on Requantization for Error-Resilient Transmission of Video,” Signal
Processing: Image Communication, Vol. 17, pp. 573 585, 2002.
[49] A. Sehgal, A. Jagmohan, and N. Ahuja, “Wyner-Ziv Coding of Video: An Error-
Resilient Compression Framework,” IEEE Trans. on Multimedia, Vol. 6, No. 2,
Apr. 2004.
[50] T. Shanableh and M. Ghanbari, “Loss Concealment Using B-Pictures Motion Information,”
IEEE Trans. on Multimedia, Vol. 5, No. 2, 2003.
[51] C. Shi and B. Bhargava, “A fast MPEG video encryption algorithm,” Proc. ACM
Conf. on Multimedia, pp. 81-88, 1998.
[52] C. Shi, S.Y. Wang, and B. Bhargava, “MPEG video encryption in real-time using
secret key cryptography,” Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.
[53] S. Shirani, F. Kossentini, and R. Ward, “A Concealment method for Video Communications
in an Error-Prone Environment”, IEEE Journal on Selected Areas in
Communications, Vol. 18, NO. 6, pp. 1122 1128, June 2000.
[54] J. Song and K. J. R. Liu, “A Data Embedded Video Coding Scheme for Error-Prone
Channels,” IEEE Trans. on Multimedia, Vol. 3, No. 4, 2001.
[55] K. Su, D. Kundur, D. Hatzinakos, “Statistical Invisibility for Collusion-resistant
Digital Video Watermarking,” to appear in IEEE Trans. on Multimedia.
[56] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution Scene-based Video
Watermarking Using Perceptual Models,” IEEE Journal on Selected Area in Communications,
Vol. 16, No. 4, pp. 540-550, 1998.
[57] L. L. Tang, “Methods for Encrypting and Decrypting MPEG Video Data Efficiently,”
Proc. ACM Conf. on Multimedia, pp. 219-229, 1996.
[58] A. Tosun and W. C. Feng, “On Error Preserving Encryption Algorithms for Wireless
Video Transmission,” Proc. ACM Conf. on Multimedia, 2001.
[59] S. Tsekeridou and I. Pitas, “MPEG-2 Error Concealment Based on Block-Matching
Principles,” IEEE Trans. on Circuits and System for Video Technology, Vol. 10, No.
4, pp. 646 658, June 2000.
[60] Y. Wang and Q. F. Zhu, “Error Control and Concealment for Video Communication:
A review,” Proc. of the IEEE, Vol. 86, pp. 974 997, 1998.
[61] Y. Wang and S. Lin, “Error-Resilient Video Coding Using Multiple Description
Motion Compensation,” IEEE Trans. on Circuits and Systems for Video Technology,
Vol. 12, No. 6, Jun. 2002.
[62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment:
From Error Visibility to Structural Similarity,” IEEE Trans. on Image
Processing, Vol. 13, No. 4, pp. 600-612, 2004.
[63] J. Wen, M. Severa, W. Zeng, M. H. Luttrell, and W. Jin, “A Format-compliant
Configurable Encryption Framework for Access Control of Video,” IEEE Trans.
on Circuits and Systems for Video Technology, Vol. 12, No. 6, pp. 545-557, 2002.
[64] S. Voloshynovskiy, S. Pereira, A. Herrigel, N. Baumgartner, and T. Pun, “Generalized
Watermarking Attack Based on Watermark Estimation and Perceptual Remodulation”,
SPIE: Security and Watermarking of Multimedia Contents II, Vol.
3971, 2000.
[65] S. Voloshynovskiy, F. Deguillaume, S. Pereira, and T. Pun, “Optimal Adaptive
Diversity Watermarking with Channel State Estimation,” Proc. SPIE: Security and
Watermarking of Multimedia Contents III, Vol. 4314, USA, 2001.
[66] X. Xu, S. Dexter, and A. M. Eskicioglu, “A Hybrid Scheme of Encryption and
Watermarking,” IS&T/SPIE Symposium on Electronic Imaging 2004, Security,
Steganography, and Watermarking of Multimedia Contents VI Conference, San
Jose, CA, January 19-22, 2004.
[67] P. Yin, M. Wu, and B. Liu, “A Robust Error Resilient Approach for MPEG Video
Transmission over Internet,” Proc. SPIE: Visual Communication and Image Processing,
2002.
[68] W. Zeng and S. Lei, “Efficient Frequency Domain Selective Scrambling of Digital
Video,” IEEE Trans. on Multimedia, Vol. 5, No. 1, pp. 118-129, 2003.
[69] W. Zeng, X. Zhuang, and J. Lan, “Network Friendly Media Security: Rationales,
Solutions, and Open Issues,” Proc. IEEE Int. Conf. on Image Processing, 2004.
[70] B. B. Zhu, C. Yuan, Y. Wang and S. Li, “Scalable Protection for MPEG-4 Fine
Granularity Scalability,” IEEE Trans. on Multimedia, Vol. 7, No. 2, pp. 222-233,
2005.
指導教授 呂俊賢、范國清
(Chun-Shien Lu、Kuo-Chin Fan)
審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明