博碩士論文 88623006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.215.182.36
姓名 林建宏(Chien-hung Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 磁暴時低緯度電離層變化
(Low-Latitude Ionosphere Variations during Magnetic Disturbances)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 電離層赤道異常與赤道電噴流★ 日出前及日落後電離層高度變化之研究
★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體★ 低緯度電離層大氣暉光之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電離層電漿濃度赤道異常現象是低緯度電離層中最為顯著的特徵, 其成因主要是因為地球磁場在赤道地區為水平方向, 水平磁場與白天因潮汐產生的東向電場產生E×B向上的電漿漂移, 此向上漂移會將電離層電漿從較低的高度傳輸到較高的高度, 當電漿被帶到較高的高度後因為受到重力跟壓力梯度力的效應, 電漿會延磁力線傳輸或擴散到磁赤道兩旁較高的緯度造成電漿的堆積形成電漿濃度的赤道異常峰, 這種傳輸現象因為狀似噴泉所以被稱為電漿噴泉效應. 因為低緯電離層主要的結構是電漿赤道異常現象, 所以藉由電漿噴泉效應的變化會影響電漿赤道異常進而影響到整個低緯電離層的結構. 電離層赤道峰的電子濃度與位置受因為到下列的影響而改變, (1) 受到中性風延磁力線方向的影響而改變電漿延磁力線方向的傳輸, (2) 因為中性大氣成分的變化造成的化學產生與消失的擾動變化, 以及 (3) 改變東西向電場使得 E×B向上電漿漂移速度的變化.
在太陽寧靜時, 低緯電離層有季節變化. 季節變化可以歸納成以下幾點. (1) 在夏冬至時, 南北半球的赤道異常峰會有不對稱的現象, 在夏半球的異常峰濃度較冬半球的異常峰減低, (2) 在春秋分時, 南北半球的赤道異常峰的電子濃度都較夏冬至時來的大, (3) 地理與地磁赤道的偏移亦會對赤道異常峰的變化造成影響. 在磁暴時, 磁層的能量與動量經由極區下衝的沉降高能粒子以及電場延磁力線映成到高緯電離層產生焦耳熱的方式傳播到電離層. 這些磁暴時產生的大量能量將中性大氣游離並對熱氣層加熱造成電離層的導電性增加並造成中性風與大氣成分的擾動進而影響到電離層的電子濃度結構. 磁暴時的電離層與中性大氣的擾動包括了高緯傳到低緯的電場擾動, 向赤道傳播的赤道方向中性風以及中性大氣氧原子與氮分子, 氧分子分佈的擾動. 因磁暴產生的中性風擾動也會造成電離層電動效應產生擾動電場. 這些電場, 中性風以及中性大氣成份的擾動影響電離層電子濃度甚巨.
本論文利用多種衛星觀測資料, 包括全球定位系統 (GPS) 量測的電離層全電子含量 (TEC), 中華衛星一號的電離層電漿電動效應儀量測的電漿離子濃度與離子漂移, 以及利用NASA TIMED 衛星上的 GUVI 所量得之大氣輝光所推算得中性大氣中的氧原子與氮分子比例 ([O]/[N2]) 來共同觀測磁暴時低緯電離層電漿濃度變化以及電漿漂移與中性大氣擾動對其造成之影響. 觀測結果顯示, 在磁暴開始的初始階段赤道異常峰會移動到較高緯度並伴隨著強大的電子濃度增強, 經過數小時後在慈報的主相過後, 赤道異常峰明顯的減弱, 其後電離層電漿濃度亦有著明顯的變化直到磁暴結束. 赤道異常峰的增強可能是因為磁暴時磁層的電場從極區傳到赤道地區造成強大的電漿向上漂移將電漿傳輸到較大的高度形成較為強大的噴泉效應. 藉由中華衛星一號的電離層電漿電動效應儀的觀測, 此一推論得到證實. 另外, TIMED GUVI 推算的中性大氣氧氮比擾動與電子濃度的減少有著很好的吻合度. 推測電子濃度的減弱除了因為磁暴風擾動產生的電場影響 (disturbance dynamo) 減弱噴泉效應之外, 磁暴產生的氧氮比擾動亦為一重要因素.
除了衛星共同觀測之外, 本論文亦利用了物理理論電離層數值模式模擬低緯電離層于磁暴時之變化, 主要利用的電離層數值模式為Sheffield University Plasmasphere Ionosphere Model (SUPIM) 以及NCAR Thermosphere-Ionosphere Electrodynamic General Circulation Model (TIEGCM). 模擬結果顯示, 造成赤道異常峰的高緯方向移動與電子濃度的強烈增加的原因除了因電場增強產生的增強噴泉效應之外磁暴產生的赤道方向中性風亦扮演著很重要的角色, 赤道方向中性風能夠讓電離層維持在較高的高度, 使得電漿消失的效應減緩而產生電漿的堆積. 此外, 模擬結果亦預測了新的電離層電漿結構的存在以及其產生機制. 數值模式預測了電離層電子洞的結構以及拱形的電子濃度結構.
摘要(英) The low latitude ionosphere is unique in that the magnetic field is nearly horizontal, so that zonal electric fields, produced by the neutral wind dynamo during quiet geomagnetic times, can transport the plasma vertically through the E×B drift. This quiet-time vertical drift is upward during the daytime, causing plasma to drift to higher altitudes, from where it diffuses down along magnetic fields to higher latitudes creating two plasma crests on both sides of the magnetic equator. This feature is called the equatorial ionization anomaly (EIA), and the effect of transporting the plasma from the magnetic equator to higher latitudes is described as the fountain effect [Duncan 1960; Wright 1962; Hanson and Moffett 1966; Anderson 1973]. The plasma density and the peak location of the EIA can be modified by changes of: (1) the transport parallel to magnetic field lines through disturbance neutral winds and diffusion; (2) the loss process due to storm produced composition perturbations; and (3) the transport perpendicular to magnetic field lines due zonal electric field perturbations.
During the magnetically quiet time, the electron density and the location of EIA peaks in both hemispheres show prominent seasonal variations. They are generally characterized by (1) in solstice, only the EIA peak in the winter hemisphere remains and a comparatively weak EIA density structure appears in the summer hemisphere, (2) in equinox, two EIA peaks are manifest and the overall electron density is larger than in solstice, (3) the offset of the magnetic equator and the geographic equator also has effects in production of the EIA asymmetry.
During magnetic storms, magnetospheric energy and momentum are deposited in the ionosphere/thermosphere through auroral particle precipitation and ionospheric plasma convection driven by electric fields mapped from the magnetosphere. Intense auroral particle precipitation heats the thermosphere, ionizes the neutral gas, and increases the conductivity of the ionosphere. The increased conductivity combined with the magnetospheric electric field produces Joule heating in the ionosphere/thermosphere, which is the major energy source during storms. Heating of the thermosphere drives equatorward wind surges and causes an upwelling at high latitudes which carries heavier neutrals upward and increases the mean molecular mass. In addition to the thermospheric responses, the ionospheric electric field disturbances are observed at middle and low latitudes on different time scales. They result from both prompt penetration of time-varying magnetospheric fields from high latitudes to low latitudes and longer time lasting disturbance wind dynamo effects.
In this study, the GPS derived total electron content (TEC), drift measurements from the ROCSAT-I at 600 km, and far ultraviolet airglow measured by the Global Ultraviolet Imager (GUVI) carried aboard the NASA TIMED satellite are utilized for observing the disturbance of the low latitude ionosphere during the magnetic storms. Observations from GPS-TEC often show that the equatorial ionization anomaly (EIA) expanded to much higher latitude with a great enhancement in the density during the early stage of the magnetic storm compared with quiet time. Following the expansion of the EIA, suppression of the EIA is often observed several hours after the storm onset. The derived ExB drifts measured from the Ionospheric Plasma and Electrodynamics Instrument (IPEI) onboard the ROCSAT-I show strong upward/poleward E×B drifts during the EIA expansions and downward/equatorward E×B drifts during the suppression. The [O]/[N2] inferred from the ratio of the 135.6 nm and LBH emissions from the GUVI provides information of storm-time composition perturbations which often result in negative ionospheric effect, i.e. reduced of the plasma density due to the magnetic storm.
Theoretical models, the Sheffield University Plasmasphere Ionosphere Model (SUPIM) and the NCAR Thermosphere-Ionosphere Electrodynamic General Circulation Model (TIEGCM), are used to examine the relative importance of the ionospheric drivers in changing the EIA morphology during both magnetically quiet and disturbed periods. Model results show that the summer to winter meridional neutral winds produce the trans-equatorial transport of the plasma, resulting in seasonal asymmetry of the EIA peaks during the magnetically quiet period. Poleward expansion of the EIA peaks and strong increased EIA peak densities observed by the GPS TEC during the early stage of the magnetic storm are simulated and examined by the model. Simulation results show that the storm-produced equatorward meridional neutral wind plays a role in maintaining the ionospheric layer at higher altitude, where the recombination loss is smaller and the plasma is able to accumulate. Combing the upward/poleward E×B drifts with the equatorward neutral wind, poleward expansion of EIA peaks and very high EIA peak densities are simulated by the model during the early stage of the storm. Additionally, new features in the topside ionosphere, such as storm-time electron density hole and density arch are predicted by the model simulations.
關鍵字(中) ★ 磁暴
★ 電離層
關鍵字(英) ★ Ionosphere
★ Magnetic Storm
論文目次 摘要......................................................................................................................................i
Abstract..............................................................................................................................iv
Acknowledgements..........................................................................................................vii
Table of Contents...............................................................................................................x
List of Figures.................................................................................................................xiii
List of Tables....................................................................................................................xx
Chapter 1. Introduction……………………………………………..……………….. 1
1.1 Dissertation Motivation and Objective……………………………..………………...1
1.2 Thermosphere………………………………………………………..………………4
1.3 Ionosphere……………………………………………………..……………………..6
1.4 The Low-Latitude Ionosphere..............................................………....………………14
1.5 Magnetic Storm Effects to the Ionosphere……………………………..…………….18
Chapter 2. Theoretical Models: NCAR TIEGCM and SUPIM………..…………...23
2.1 NCAR TIEGCM………………..………………………………………..………….23
2.2 SUPIM………………………………………………………………..……………..30
Chapter 3. Observation Instruments:
GPS, ROCSAT-1 and TIMED-GUVI…………………………………....38
3.1 GPS TEC…...……………………………………………….…………..………38
3.2 ROCSAT-1 IPEI…………………………………………………………..…………49
3.3 TIEMD GUVI…………………………………………………………..……….52
Chapter 4. Seasonal Variations in the Equatorial Ionization Anomaly Region.......56
4.1 TEC Observations........................................................................................................57
4.2 Model Simulations and Discussions....…………………………….……………….60
4.3 Summary…………………………………....………………….....………………….75
Chapter 5. Solar Flare Effects in the Ionosphere Observed by the GPS............................................................................................................79
5.1 Theory...…………………………………….………………………………………..79
5.2 Observations…………………………………………………………………………83
5.3 Discussions…………………………………………………………………………..87
5.4 Conclusions....…………………………………………………………….………….91
Chapter 6. Magnetic Storm Effects in the Low-Latitude Ionosphere …….….…. 100
6.1 Storm-time Ionospheric Variations due to Various Ionospheric Drivers .….….… 101
6.2 Observations of the Low-Latitude Ionosphere Responses during Magnetic Storms ....................................................................................................................120
6.3 Summary…………………………………………………………………………... 124
Chapter 7. Event Study, the October-November, 2003 Storm Event: Observation Results........................................................................................................133
7.1 Overview the October-November, 2003 Event ...…...………………………….. 136
7.2 Observation Results ................................................................................................. 138
7.3 Discussions .............................................................................................................. 165
7.4 Summary .................................................................................................................. 172
Chapter 8. Event Study, the October-November, 2003 Storm Event: Theoretical Modeling…..............…………………………………..................…........175
8.1 TIEGCM Simulations............................................................................................... 176
8.2 SUPIM Simulations.................................................................................................. 184
8.3 Electron Density Hole and the Density Arch............................................................ 213
8.4 Summary and Conclusions....................................................................................... 222
Chapter 9. Conclusions................................................................................................. 225
References...................................................................................................................... 231
參考文獻 Abdu, M. A., J. H. Sobral, E. R. de Paula, and I. S. Batista, Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA): an overview, J. Atmos. Terr. Phys., 53, 757-771, 1991.
Abdu, M. A., Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Solar-Terr. Phys., Vol. 59, No. 13. pp. 1505-1519, 1997.
Anderson, D. N., A theoretical study of the ionospheric F-region equatorial anomaly, I, Theory, Planet. Space Sci., 21, 409-419, 1973.
Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946
Axford, W. I., The polar wind, J. Geophys. Res., 73, 6855, 1968
Bailey, G. J., and R. Sellek, A mathematical model of the Earth’s plasmasphere and its application in a study of He+ at L=3, Annales Geophysicae, 8(3), 171-190, 1990.
Bailey, G. J., and N. Balan, A Low-Latitude Ionosphere-Plasmasphere Model, in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, edited by R. W. Schunk, 1996.
Balan, N., Y. Otsuka, T. Tsugawa, S. Miyazaki, T. Ogawa, and K. Shiokawa, Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 54, 71-79, 2002.
Banks, P. M., and T. E. Holzer, Features of plasma transport in the upper atmosphere, J. Geophys. Res., 74, 6304, 1969.
Basu, S., Sa. Basu, K. M. Groves, H. C. Yeh, F. J. Rich, P. J. Sultan, and M. J. Keskinen, Response of the equatorial ionosphere to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28(18), 3577-3580, 2001.
Batista, I. S., E. R. de Paula, M. A. Abdu, and N. B. Trivedi, Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes, J. Geophys. Res., 96, 13,943, 1991.
Blanc, M., and A. D. Richmond, The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669, 1980.
Budden, K. G., The propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and magnetosphere, Cambridge University Press, 1985.
Buonsanto, M. J., Ionospheric storms – A review, Space Sci. Rev., 88, 563, 1999.
Buonsanto, M. J., and J. C. Foster, Effects of Magnetospheric Electric Fields and Neutral Winds on the Low-Middle Latitude Ionosphere During the March 20-21, 1990, Sorm, J. Geophys. Res., 98, NO. A11, 19133-19140, 1993.
Burns, A. G., T. L. Killen, and R. G. Roble, A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm, J. Geophys. Res., 96, 14153-14167, 1991.
Christensen, A. B., et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108(A12), 1451, doi:10.1029/2003JA009918, 2003.
Davies, K., Ionospheric Radio, 580 pp., Peter Peregrinus Ltd., 1990.
Dellinger, J. H., Sudden disturbances of the ionosphere, Proc. I. R. E., 25, 1253, 1937.
Deng, W., T. L. Killeen, A. G. Burns, and R. G. Roble, The flywheel effect: Ionospheric currents after a geomagnetic storm, Geophys. Res. Lett., 18, 1845-1848, 1991.
Denton, M. H., G. J. Bailey, C. R. Wilford, A. S. Rodger, and S. Venkatraman, He+ dominance in the plasmasphere during geomagnetically disturbed periods: 1. Observational results, Ann. Geophysicae, 20, 461-470, 2002.
Donnelley, R. F., Extreme ultraviolet flash of solar flare observed via sudden frequency deviation: Experimental results, Solar Physics, 20, 188, 1971.
Duncan, R. A., The equatorial F region of the ionosphere, J. Atmos. Terr. Phys., 18, 89, 1960.
Farley, D.T., Bonelli, E., Fejer, B.G., Larsen, M.F., The prereversal enhancement of the zonal electric ,eld in the equatorial ionosphere. J. Geophys. Res., 91, 13723, 1986.
Fejer, B. G., and L. Scherliess, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 22, 851–854, 1995.
Fejer, B. G., C. A. Gonzales, D. T. Farley, and M. C. Kelley, Equatorial electric fields during magnetically disturbed conditions, 1, The effect of the interplanetary magnetic field, J. Geophys. Res., 84, 5797–5802, 1979.
Fejer, B. G., R. W. Spiro, R. A. Wolf, and J. C. Foster, Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results, Ann. Geophysicae, 8, 441–454, 1990.
Fejer, B. G., Low latitude electrodynamic drifts: a review, J. Atmos. Terr. Phys., 53, 677-693, 1991.
Fejer, B. G., and J. T. Emmert, Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19-21 October 1998 magnetic storm, J. Geophys. Res., 108(A12), 1454, doi:10.1029/2003JA010190, 2003.
Fesen, C. G., R. E. Dickenson, and R. G. Roble, Simulation of thermospheric tides at equinox with the National Center for Atmospheric Research thermospheric general circulation model, J. Geophys. Res., 91, 4471-4489, 1986.
Fesen, C. G., G. Growley, and R. G. Roble, Ionospheric Effects at Low Latitudes During the March 22, 1979, Geomagnetic Storm, J. Geophys. Res., 94, NO. A5, 5405-5417, 1989.
Fesen, C. G., G. Crowley, R. G. Roble, A. D. Richmond, and B. G. Fejer, Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett., 27(13), 1851–1854, 2000.
Field, P. R., H. Rishbeth, R. J. Moffett, D. W. Idenden, T. J. Fuller-Rowell, G. H. Millward, and A. D. Aylward, Modelling composition changes in F-layer storms, J. Atmos. Sol. Terr. Phys., 60 (5), 523-543, 1998.
Forbes, J. M., and M. Harel, Magnetosphere-thermosphere coupling: an experiment in interactive modeling, J. Geophys. Res., 94, 2631–2644, 1989.
Foster, J. C., Storm time plasma transport at middle and high latitudes, J. Geophys. Res., 98, 1675–1690, 1993.
Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 10.1029/2002GL015067, 2002.
Foster, J. C., A. J. Coster, P. J. Erickson, W. Rideout, F. J. Rich, T. Immel, and B. R. Sandel, Redistribution of the Stormtime Ionosphere and the Formation of a Plasmaspheric Bulge, Proceedings of 2004 Yosemite Workshop, 2005.
Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan, Responseof the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893-3914, 1994.
Fuller-Rowell, T. J., M. V. Codrescu, H. Rishbeth, R. J. Moffett, and S. Quegan, On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343–2353, 1996.
Fuller-Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, M. V. Codrescu, and G. H. Millward, A Coupled Thermosphere-Ionosphere Model (CTIM), in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, edited by R. W. Schunk, 1996.
Fuller-Rowell, T. J., The “thermospheric spoon”: A mechanism for the semiannual density variation, J. Geophys. Res., 103, 3951, 1998.
Fuller-Rowell, T. J., M. V. Codrescu, R. G. Roble, and A. D. Richmond, How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm?, in Magnetic Storms, edited by B. T. Tsurutani, W. D. Gonzales and Y. Kamide, AGU Monograph, Wash. D. C., 1998.
Fuller-Rowell, T. M., G. H. Millward, A. D. Richmond, and M. V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64, 1383, 2002.
Gagnepain, J., M. Crochet, A. D. Richmond, Theory of longitudinal gradients in the equatorial electrojet, J. Atmos. Terr. Phys., 38, 279-286, 1976.
Gonzales, C. A., M. C. Kelley, and B. G. Fejer, Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements, J. Geophys. Res., 84, 5803, 1979.
González, S. A., and M. P. Sulzer, Detection of He+ layering in the topside ionosphere over Arecibo during equinox solar minimum conditions, Geophys. Res. Lett., 23(18), 2509–2512, 1996.
Greenspan, M. E., C. E. Rasmussen, W. J. Burke, and M. A. Abdu, Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989, J. Geophys. Res., 96, 13931-13942, 1991.
Hanson, W. B., and R. J. Moffett, Ionization transport effects in the equatorial F region, J. Geophys. Res., 71, 5559, 1966.
Hargreaves, J. K., The Solat-terrestrial environment, Cambridge University, pp. 289-295, 1992.
Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649-4662, 1987.
Hedin, A. E. et al., Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657-7688, 1991.
Hernandez-Pajares, M., J. M. Juan, and J. Sanz, High resolution TEC monitoring method using permanent ground GPS receivers, Geophys. Res. Lett., 24, 1643, 1997.
Ho, C. M., Wilson, B. D., Mannucci, A. J., Lindqwister, U. J., and Yuan, D. N., `A Comparative Study of Ionospheric Total Electron Content Measurements Using Global Ionospheric Maps of GPS, TOPEX Radar, and the Bent Model', Radio Sci. 32 , 1499-1512, 1997.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, GPS Theory and Practice, 3rd version, Springer-Verlag, Wien, New York, 1994.
Huang, Y. N., and K. Cheng, Ionospheric disturbances at the equatorial anomaly crest region during the March 1989 magnetic storms, J. Geophys. Res., 96, 13,953, 1991.
Huang, Y.-N., K. Cheng, Solar cycle variations of the equatorial ionosphere anomaly in total electron content in the Asian region, J. Geophys. Res., 101, 24,513, 1996.
Iijima, B.A. I.L. Harris, C.M. Ho, U.J. Lindqwister, A.J. Mannucci, X. Pi, M.J. Reyes, L.C. Sparks, B.D. Wilson, Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data, J. Atmos. Solar-Terr. Phys., 61 , 1205-1218, 1999.
Immel, T. J., N. Ostgaard, D. J. Strickland, H. U. Frey, S. B. Mende, Gang Lu, IMAGE-FUV observations of the October-November 2003 flare and magnetic storm effects on Earth, Eos. Trans. AGU, 85(17), Joint Assembly Suppl., Abstract SH43B-02, 2004.
Jaggi, R. K., and R. A. Wolf, Self-consistent calculation of the motion of a sheet of ions in the magnetosphere, J. Geophys. Res., 78, 2852–2866, 1973.
Kelley, M. C., B. G. Fejer, and C. A. Gonzales, An explanation for anomalous quatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6, 301–304, 1979.
Kelley, M. C., The Earth’s Ionosphere, Plasma Physics and Electrodynamics, Academic Press, 1989.
Kelley, M. C., J. J. Makela, J. L. Chau, and M. J. Nicolls, Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 (4), 1158, doi:10.1029/2002GL016321, 2003.
Kelly, M. C., M. N. Vlasov, J. C. Foster, and A. J. Coster, A quantitative explanation for the phenomenon known as storm-enhanced density, Geophys. Res. Lett., 31, L19809, 2004.
Kikuchi, T., H. Lühr, K. Schlegel, H. Tachihara, M. Shinohara, and T. I. Kitamura, Penetration of auroral electric fields to the equator during a substorm, J. Geophys. Res., 105(23),251–23,261, 2000.
Kil, H., L. J. Paxton, X. Pi, M. R. Hairston, and Y. Zhang, Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere, J. Geophys. Res., 108(A11), 1391, doi:10.1029/2002JA009782, 2003.
Leick, A., GPS satellite surveying, 560 pp., John Wiley, New York, 1995.
Liu, J. Y., C. S. Chiu, and C. H. Lin, The solar flare radiation responsible for sudden frequency deviation and geomagnetic fluctuation, J. Geophys. Res., 101, 10855, 1996a.
Liu, J. Y., H. F. Tsai, and T. K. Jung, Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci., 7, 107-117, 1996b.
Liu, J. Y., C. H. Lin, H. F. Tsai, and Y. A. Liou, Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation, J. Geophys. Res., 109, A01307, doi:10.1029/2003JA009931, 2004.
Lu, G., A. D. Richmond, B. A. Emery, and R. G. Roble, Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current, J. Geophys. Res., 100(A10), 19643–19659, 1995.
Lu, G., Pi X., Richmond A. D., and Roble R. G., Variations of total electron content during geomagnetic disturbances: A model/observation comparison, Geophys. Res. Lett., 25 (3), 253-256, 1998.
Lu, G., Richmond A. D., Roble R. G. and Emery B. A., Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study, J. Geophys. Res., 106 (A11), 24493-24504, 2001.
Lyon, L. R., T. L. Killeen, and Walterscheid, The neutral “flywheel” as a source of quiet-time polar cap currents, Geophys. Res. Lett., 12, 101-104, 1985.
Masuda, S., T. Kosugi, and H. S. Hudson, Hard X-ray Two-Ribbon Flare Observed with Yohkoh/HXT, paper presented at AGU Fall Meeting, San Francisco, USA, 2000.
Matsushita, S. and W. H. Campbell, Physics of Geomagnetic Phenomena, Academic, San Diago, Calif., 1967
Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge, A Global Mapping Technique for GPS-derived Ionospheric Total Electron Content Measurements, Radio Sci. 33 , 565-582, 1998.
Millward, G. H., H. Rishbeth, T. J. Fuller-Rowell, A. D. Aylward, S. Quegan, and R. J. Moffett, Ionospheric F2 layer seasonal and semiannual variations, J. Geophys. Res., 101(A3), 5149–5156, 1996.
Mitra, A. P., J. Atmos. Terr. Phys., 30 , 1065-1114, 1968.
Mitra, A. P., Ionospheric Effects of Solar Flares, 294 pp., D. Reidel Publishing Company, Dordrecht-Holland, 1974.
Mozer, F. S., Electric field mapping in the ionosphere at the equatorial plane, Planet. Space Sci., 18(2), 259-263, 1970.
Nishida, A., Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73(17), 5549, 1968.
Ohshio, M., Solar flare effect on geomagnetic variations, J. Radio Res. Lab. Jpn., 11, 377-491, 1964.
Peymirat, C., and D. Fontaine, Numerical simulation of magnetospheric convection including the effect of field-aligned currents and electron precipitation, J. Geophys. Res., 99, 11,155– 11,176, 1994.
Prölss, G. W., Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807-811, 1987.
Prölss, G. W., Ionospheric F-Region Storms, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, CRC Press, 1995.
Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, Cambridge Univ. Press, New York, 1972.
Rasmussen, C. E. and M. E. Greenspan, Plasma Transport in the Equatorial Ionosphere During the Great Magnetic Storm of March 1989, J. Geophys. Res., 98(A1), 285-292, 1993.
Richmond, A. D., Theromospheric Dynamics and Electrodynamics, Solar-Terrestrial Physics, Principles and Theoretical Foundations (R. L. Carovillano and J. M. Forbes, eds), D. Reidel Publishing Company, Dordrecht, Holland, 523-607, 1983.
Richmond, A. D., and Y. Kamide, Mapping Electrodynamic Features of the high-latitude ionosphere from localized observations – technique, J. Geophys. Res., 93(A6), 5741-5759, 1988.
Richmond, A. D., E. C. Ridley, and R. G. Roble, A Thermosphere/Ionosphere General Circulation Model with coupled electrodynamics, Geophys. Res. Lett., 19 (6), 601-604, 1992.
Richmond, A. D., Ionospheric electrodynamics using Magnetic Apex Coordinates, J. Geomagn. Geoelectr., 47, 191–212, 1995.
Richmond, A. D., C. Peymirat, and R. G. Roble, Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108(A3), 1118, doi:10.1029/2002JA009758, 2003.
Rishbeth, H. and O. K. Garriot, Introduction to Ionospheric Physics, pp. 179-181, Academic Press, San Diego, CA, 1969.
Rishbeth, H., F-region storms and thermospheric circulation, J. Atmos. Terr. Phys., 37, 1055-1064, 1975.
Rishbeth, H., T. J. Fuller-Rowell, and A. D. Rodger. F-layer storms and thermospheric composition, Physica Scripta, 36, 327-336, 1987.
Rishbeth, H., How the thermospheric circulation affects the ionospheric F2-layer, J. Atmos. Solar-Terr. Phys., 60, 1385-1402, 1998.
Rishbeth, H., The equatorial F-layer: progress and puzzles, Ann. Geophysicae, 18, 730-739, 2000
Roble, R. G., The thermosphere, in Physics of the Upper Atmosphere and Magnetosphere, National Academy of Science, Washingto D. C., 1977.
Roble, R. G., E. C. Ridley, and R. E. Dickinson, On the global mean structure of the thermosphere, J. Geophys. Res., 92, 8745– 8758, 1987.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Richmond, A coupled thermosphere and ionosphere general circulation model, Geophys. Res. Lett., 15, 1325-1328, 1988.
Roble, R. G., The NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, edited by R. W. Schunk, 1996.
Sardón, E., A. Rius, and N. Zarraoa, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observation, Radio Sci., 29, 577-586, 1994.
Sardón, E., and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases, Radio Sci., 32, 1899-1910, 1997.
Sastri, J. H., Equatorial electric fields of the disturbance dynamo origin, Ann. Geophys., 6, 635, 1988.
Schaer, S., Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System, Vol. 59 of Geodaetisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodaetische Kommission, 1999.
Schunk, R.W., Sojka, J.J., Ionosphere–thermosphere space weather issues, J. Atmos. Terr. Phys., 58, 1527, 1996.
Sojka, J.J., R.W. Schunk, A theoretical study of the high latitude F-region response to magnetospheric storm inputs, J. Geophys. Res., 88, 2112–2122, 1983.
Spiro, R. W., R. A. Wolf, and B. G. Fejer, Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984, Ann. Geophys., 6, 39-50,1988.
Strickland, D. J., J. S. Evans, and L. J. Paxton, Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory, J. Geophys. Res., 100, 12,217, 1995.
Strickland, D. J., R. R. Meier, R. L. Walterscheid, J. D. Craven, A. B. Christensen, L. J. Paxton, D. Morrison, and G. Crowley, Quiet-time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow, J. Geophys. Res., 109, A01302, doi:10.1029/2003JA010220, 2004.
Su, S.-Y., H. C. Yeh, R. A. Heelis, J.-M. Wu, S. C. Yang, L.-F. Lee, and H. L. Chen, The ROCSAT-1 IPEI Preliminary Results: Low-Latitude Ionospheric Plasma and Flow Variations, Terr. Atmos. Oceanic Sci., 10(4), 787-804, 1999.
Tanaka, T., Low-Latitude Ionospheric Disturbances: Results for March 22, 1979, and their general characteristics, Geophys. Res. Lett., 13(13), 1399-1402, 1986.
Tsai, H. F., Global Positioning System (GPS) Observations of the Ionospheric Equatorial Anomaly, Doctoral dissertation, National Central University, 1999.
Tsai, Ho-Fang ; Liu, Jann-Yenq ; Tsai, Wei-Hsiung ; Liu, Chao-Han ; Tseng, Ching-Liang ; Wu, Chin-Chun Seasonal variations of the ionospheric total electron content in Asian/Australian equatorial anomaly regions, J. Geophys. Res. 106(A12), 30363, 2001.
Tsurutani, B., A. Mannucci, B. Iijima, M. A. Abdu, J. H. A. Sobral, W. Gonzalez, F. Guarnieri, T. Tsuda, A. Saito, K. Yumoto, B. G. Fejer, T. J. Fuller-Rowell, J. Kozyra, J. C. Foster, A. Coster, and V. M. Vasyliunas, Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi:10.1029/2003JA010342, 2004.
Vasyliunas, V. M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, edited by M. McCormac, pp. 60– 71, D. Reidel, Norwell, Mass., 1970.
Vasyliunas, V. M., The interrelationship of magnetospheric processes, in Earth’s Magnetosphere Processes, edited by M. McCormac, pp. 29– 38, D. Reidel, Norwell, Mass., 1972.
Vlasov, M., M. C. Kelley, and H. Kil, Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000, J. Atmos. Solar-Terr. Phys., 65, 1223-1234, 2003.
Yeh, H. C., S.-Y. Su, R. A. Heelis, and J.-M. Wu, The ROCSAT-1 IPEI Preliminary Results: Vertical Ion Drifts Statistics, Terr. Atmos. Oceanic Sci., 10(4), 805-820, 1999.
Yeh, H. C., S.-Y. Su, and R. A. Heelis, Storm time plasma irregularities in the pre-dawn hours observed by the low-latitude ROCSAT-1 satellite at 600 km altitude, Geophys. Res. Lett., 28(4), 685-688, 2001.
Wang, W., A thermosphere-Ionosphere Nested Grid (TING) Model, Doctoral dissertation, University of Michigan, 1998.
Wilford, C. R., R. J. Moffett, J. M. Rees, G. J. Bailey, and S. A. Gonzalez, Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results, J. Geophys. Res., 108(A12), 1452, doi:10.1029/2003JA009940, 2003.
Wilson, B. D., A. J. Mannucci, C. D. Edwards, and T. Roth, Global ionospheric maps using a global network of GPS receivers, The Int’l Beacon Satellite Symposium, MIT, Cambridge, MA., 1992.
Wright, J. M., Vertical cross sections of the ionosphere across the geomagnetic equator, NBS Tech. Note 138, U.S. Dept. of Commer., Washington, D. C., 1962.
Wu, C.-C., C. D. Fry, J. Y. Liu, K. Liou, C.-L. Tseng, Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996 – August 1997, J. Atmos. Solar-Terr. Phys., 66, 199-207, 2004.
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明