博碩士論文 88624011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.117.162.80
姓名 黃鈴珺(Ling-Chung Huang )  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 水平互層地盤之承載行為研究及承載力之預估
(The bearing behavior of a horizontal layered mass and calculation of it capacity)
相關論文
★ 沉箱式碼頭受震引致土壤液化之數值模擬★ 落石運動之模型試驗研究
★ FLAC程式應用於土壤邊坡穩定分析★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例
★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣常見的地質構造如地盤中夾帶層面、互層、斷層、節理、葉理等弱面。岩石的組成則和前述有所關聯,當然其力學行為和均質完整岩石會有所差別。本為主要目的是利用數值分析方法以研究剛性條形基礎座落於互層地盤上之承載行為,並從一些例子建立一個承載力之預估公式。
本文主要以有限差分連續分析之套裝軟體-FLAC程式進行承載行為之探討。基礎加載是以應變控制為主,從荷重-沈陷曲線及擾動範圍找出極限承載力,其中擾動範圍是由位移向量圖所定義出。由Case A-硬砂岩下覆軟頁岩 (HS-SS);Case B-軟頁岩下覆硬砂岩 (SS-HS),可瞭解互層地盤之承載行為,砂頁岩分別代表典型的力學特性。此外,利用倒傳類神經網路發展廣義的互層地盤承載力評估公式,由FLAC模擬出不同地層參數資料共910組進行迴歸,參數範圍在摩擦角(f) = 0~30°,凝聚力(c) = 0~1 MPa之間,並考慮三種形式分別為無凝聚性、無凝聚性及凝聚性、凝聚性土壤互層,以建立評估公式。
結果顯示,硬砂岩下覆軟頁岩其極限承載力會隨層厚比之增加而增強,而軟頁岩下覆硬砂岩則減少,前者影響深度為4倍基礎寬度,而後者影響深度為2.5倍基礎寬度。上下層之凝聚力、摩擦角在某一深度內會影響極限承載力(並不是僅有每層之承載力會影響)。當類神經網路測試預估之偏差量小於10﹪時,則即建立起一正確互層地盤承載力之預估公式,另外,在線性分析中,可找出各種互層形式下之最大影響因子,例如:非凝聚性互層土壤-軟在上時,上層摩擦角為其最大影響因子。
摘要(英) The geologic structures such as faults, joints, bedding planes, inter-bedding, and foliation, are very common in Taiwan. The rock formation associated with these features, of course, yields a mechanical behavior totally different from that of a homogeneous, intact mass. The main objective of this thesis is to numerically study the bearing mechanism of a rigid strip foundation of width (B) sitting on a mass of two layered formations, and to establish a predictive model of bearing capacity for such a case, which has never arrived at a unified form in the literature.
The bearing behavior of such a mass was simulated by the FLAC code, in which finite-difference scheme is employed for both the spatial and time domains. The foundation loading mode used is strain-controlled, and the ultimate bearing capacity (qu) is determined from the loading versus settlement curve and the disturbed zone beneath the foundation is localized according to the displacement vector plots. For understanding the distinct bearing behavior of a two-layered formation system, two cases were selected: Case A with a hard sandstone layer (HS) of thickness (H1) overlying a soft shale (SS), and Case B with SS overlying HS, each material assigned with typical mechanical properties. Besides, the neural networks analysis with backward propagation algorithm (NNAB) was adopted to develop a general bearing capacity formulas for a two-layered formation system, and about nine hundreds of cases were run by FLAC with formation properties (for common soils): the friction angle (f) varying from 0 to 30° and cohesion (c) from 0 to 1MPa. Three situations were considered: both layers cohesionless, one cohesionless and another cohesive soils, and both cohesive.
The simulation results of HS-SS system show that qu increases with H until H approaches 4B for Case A, qu decreases with H until H approaches 2.5B for Case B, and both (f,c) values of two formations affect qu to some certain extent (but not merely qu of each formation). The NNAB established a fair predictive model of qu for a two-layered soil system, with a prediction error less than 10%. In its linear model analysis, the most influential factor for each situation was also identified, and for instance, such a factor is the friction angle of the top layer (f1) for a two-layered cohesionless system with a weaker top layer.
關鍵字(中) ★ FLAC
★  互層地層
★  剛性條形基礎
★  承載力
★  承載行為
★  數值分析
★  類神經網路
關鍵字(英) ★ bearing behavior
★  bearing capacity
★  FLAC
★  neural networks analysis
★  numerical analysis
★  rigid strip foundation
★  two-layered formation
論文目次 目 錄
中文摘要I
英文摘要II
誌謝III
目錄IV
表目錄Ⅸ
圖目錄ⅩⅡ
第一章緒論1
1.1前言1
1.2研究動機與目的3
1.3研究方法及範疇3
1.4論文之格式及內容
第二章文獻回顧5
2.1土壤承載理論6
2.1.1 淺基礎破壞模式6
2.1.2 Prandlt極限承載理論8
2.1.3 Terzaghi極限承載理論9
2.1.4 Meyerhof極限承載理論11
2.2岩石承載行為13
2.2.1 岩盤強度評估13
2.2.2 岩石基礎破壞模式21
2.3完整岩石基礎承載力23
2.3.1 Bell塑性平衡法23
2.3.2 Hill極限分析法24
2.3.3 Ladanyi塑性平衡法25
2.3.4 Chen&Drucker極限分析法25
2.3.5 Chen極限分析法28
2.3.6 Sower塑性平衡法28
2.3.7 Pell&Turner塑性平衡法29
2.4非完整岩石基礎承載力30
2.4.1 RQD折減法30
2.4.2 Wyllie塑性平衡法30
2.4.3 Ladanyi-Roy承載理論31
2.4.4 Davis塑性平衡法32
2.5層狀地層理論33
2.5.1 Terzaghi&Peck基礎荷重傳遞法33
2.5.2 Siva Reddy&Srinivasan雙層黏性土壤承載力34
2.5.3 Meyerhof&Hanna極限平衡法37
2.5.4 Satyanarayana&Garg經驗式43
2.5.5 Bowels基礎分析與設計44
2.5.6 Myslivec&Kysela經驗式46
2.5.7 層狀地層理論公式之整理48
2.6模型試驗49
2.6.1 離心機模型試驗49
2.6.2 基礎模型試驗50
2.7數值分析51
第三章研究方法53
3.1FLAC程式簡介53
3.1.1 FLAC程式概述53
3.1.2 FLAC程式的運算程序53
3.1.3 FLAC程式之理論架構54
3.1.3.1 運動方程式54
3.1.3.2 應變-位移關係55
3.1.3.3 應變張量之決定55
3.1.3.4 不平衡力之決定57
3.1.4 組合律之模式58
3.1.5 FLAC用於模擬基礎承載之分析步驟59
3.2 極限承載力及擾動範圍之定義60
3.2.1 範例介紹60
3.2.2 極限承載力之定義60
3.2.3 擾動範圍之定義61
3.3數值模擬-莫耳庫倫驗證64
3.3.1 數值模擬之參數64
3.3.2 分析結果與討論64
第四章互層地盤之承載力探討66
4.1堅硬層下覆軟弱層66
4.1.1 分析流程及參數介紹66
4.1.2 分析結果討論68
4.1.2.1 數值模擬結果與討論68
4.1.2.2 理論預測結果69
4.2軟弱層下覆堅硬層76
4.2.1 分析流程及參數介紹76
4.2.2 分析結果討論76
4.2.2.1 數值模擬結果與討論76
4.2.2.2 理論預測結果77
4.3上層不同c、f -承載力探討84
4.3.1 堅硬層下覆軟弱層84
4.3.1.1 分析流程及參數介紹84
4.3.1.2 數值分析結果與討論84
4.3.2 軟弱層下覆堅硬層89
4.3.2.1 分析流程及參數介紹89
4.3.2.2 數值分析結果與討論89
4.3.3 結果與討論90
4.4下層不同c、f -承載力探討92
4.4.1 堅硬層下覆軟弱層92
4.4.1.1 分析流程及參數介紹92
4.4.1.2 數值分析結果與討論92
4.4.2 軟弱層下覆堅硬層94
4.4.2.1 分析流程及參數介紹94
4.4.2.2 數值分析結果與討論94
4.4.3 結果與討論95
第五章層狀地盤承載力之評估公式96
5.1簡介96
5.2類神經網路簡介96
5.2.1 倒傳類神經網路97
5.3分析流程及使用參數範圍98
5.4承載力分析結果討論102
5.4.1 非凝聚性土壤互層分析結果討論102
5.4.2 非凝聚性及有凝聚性土壤互層分析結果討論105
5.4.3 凝聚性土讓互層分析結果討論106
5.5承載力預估公式與檢核110
5.5.1 非凝聚性互層土壤之預估公式與檢核110
5.5.1.1 軟弱層下覆堅硬層110
5.5.1.2 堅硬層下覆軟弱層113
5.5.2 非凝聚性及有凝聚性土壤互層之預估公式與檢核115
5.5.2.1 軟弱層下覆堅硬層115
5.5.2.2 堅硬層下覆軟弱層117
5.5.3 凝聚性土壤互層120
5.5.3.1 軟弱層下覆堅硬層120
5.5.3.2 堅硬層下覆軟弱層122
5.6影響深度之評估公式124
5.6.1 影響深度分析結果討論124
第六章結論與建議126
參考文獻129
附錄AFLAC程式模擬基礎承載行為之輸入程式A-1
附錄B類神經訓練參數值及 FLAC 模擬-承載力結果B-1
附錄C類神經訓練參數值及 FLAC 模擬-影響深度結果C-1
作者簡歷
參考文獻 王乙翕 (2000) 「層狀岩盤之承載力」,碩士論文,國立中央大學土木工程研究所

洪如江 (1991) 「初等工程地質學大綱」,財團法人地工技術研究發展基金會
張俊雄 (1993) 「類神經網路在土木工程上之應用研究」,碩士論文,國立中央大學土木工程研究所

黃哲君 (1998) 「層狀土壤之基礎承載力」,碩士論文,國立中央大學土木工程研究所

梁至仁 (1999) 「層狀地層之承載力」,碩士論文,國立中大學土木工程研究所

Brady, B.H.G. and Brown, E.T. (1985) Rock Mechanics for Underground Mining, Chapman and Hall, London.
Bell, F. G. (1992) Engineering in Rock Masses, Butterworth — Heinemann, Oxford, 580p.
Bowles, J.E. (1988) Foundation Analysis and Design, 4th Edition, McGraw-Hill, New York.
Burd, H. J. and Frydman, S. (1997) “Bearing capacity of plane-strain footings on layered soils,” Can. Geotech. J., Vol. 34, No. 2, pp. 241~253.
Chen, W.F. and William O. McCarron (1990) , “Bearing Capacity of Shallow Foundations,” in Foundation Engineering Handbook, Chapter 4, Ed. By Fang, Hsai-Yang, 2nd Edition, Van Nostrand Reinhold, New York, pp. 144~165.
Das, B.M. (1984) Principal of Geotechnical Engineering Engineering, 3rd Edition PWS, Boston.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 1: User’s Manual, Itasca Consulting Group Inc., USA.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 2: Verification Problems and Example Applications, Itasca Consulting Group Inc., USA.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 3: Appendices, Itasca Consulting Group Inc., USA.
Goodman, R.E. (1980) Introduction to Rock Mechanics, John Wiley & Sons, New York.
Jaeger, J.C. and Cook, N.G.W. (1969) Fundamentals of Rock Mechanics, Chapman and Hall, New York.
Hoek, E. and E. T. Brwon (1997) “Practical Estimates of Rock Mass Strength,” Int. J. Rock Mech. Mining Sci., Vol. 34, No. 8, pp. 1165~1186.
Hoek, E. (1990) “Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion,” Int. J. Rock Mech. Mining Sci., Vol. 27, No. 3, pp. 227~229.
Hoek, E. (1983) “Strength of jointed rock masses,” Geotechnique, Vol. 33, No. 3, pp. 187~273.
Hanna, A.M. and G.G. Meyerhof(1979)“Ultimate Bearing Capacity of Foundations on a Three-layer Soil with Special Reference to Layered Sand,” Can. Geotech. J., Vol. 16, No. 2, pp. 412~414.
Hanna, A.M. and G.G. Meyerhof (1981) “Experimental Evaluation of Bearing Capacity of Footing Subjected to Inclined Loads,” Can. Geotech. J., Vol. 18, No. 2, pp. 599~603.
Holtz, R.O. (1990) “Stress Distribution and Settlement of Shallow Foundations,” in Foundation Engineering Handbook, Chapter 5, Ed. By Fang, Hsai-Yang, 2nd Edition, Van Nostrand Reinhold, New York, pp. 166~222.
Kenny, M. J. and Andrawes, K. Z. (1997) “The Bearing Capacity of Footings on Sand Layer overlying Soft Clay,” Geotecnique, Vol. 47, No. 2, pp. 339-345.
Myslivec, A. and kysela, Z. (1978) The Bearing Capacity of Building Foundations, Elsevier.
Meyerhof, G.G. (1974) “Ultimate Bearing Capacity of Footings on Sand Layer overlying Clay,” Can. Geotech. J., Vol. 11, No. 2,pp.223~229.
Merifield, R. S., Sloan, S. W. and Yu, H. S. (1999) “Rigorous plasticity solutions for the bearing capacity of two-layered clays,” Geotechnique, V. 49, No. 4, pp. 471-490
Pells, P.J.N. and R.M. Turner (1980) , “Endbearing on Rock with Particular Reference to Sandstone,” International Conference on Structural Foundations on Rock, Sydney, pp. 181~190.
Perkins, S. W. (1995) “Bearing Capacity of Highly Frictional Material ,” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 4, pp. 450-462.
Parndtl, L. (1920) Harte plashecher Korper, Nach. Ges. Wiss. Gottingen.
Reddy, A. S. and R. J. Srinivasan (1967) “Bearing Capacity of Footings on Layered Clays,” Journal of the Soil Mechanics and Foundations Division, Proceedings, ASCE, Vol. 93, No. SM2, pp. 83~99.
Sowers G.F. (1979) Introductory Soil Mechanics And Foundation, 4th Edition, Macmillan, New York.
Terzaghi, K. and Peck, R. B. (1967) Soil Mechanics in Engineering Practice, 2nd Edition, John Wiley & Sons, New York.
Terzaghi, K. (1943) Theoretical Soil Mechanics, Wiley, New York.
Taylor, D. W. (1948) Fundamentals of Soil Mechanics, John Wiley & Sons, New York.
Wyllie, D. C. (1992) Foundations on Rock, Chapman & Hall, London.
指導教授 葛德治 審核日期 2001-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明