博碩士論文 88624014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.12.36.30
姓名 李佳翰(Chia-Han Lee )  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 沉箱式碼頭受震引致土壤液化之數值模擬
(Numerical Modeling of Earthquake-induced Liquefaction of Backfill behind Caisson Type Quay Walls)
相關論文
★ 落石運動之模型試驗研究★ FLAC程式應用於土壤邊坡穩定分析
★ 水平互層地盤之承載行為研究及承載力之預估★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例
★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 日本神戶港二座人造島 (港島與六甲島) 於阪神大地震時,因大規模的土壤液化而導致沉箱式碼頭的側移破壞情形,與台灣921大地震時,台中港1至4A號碼頭的破壞型式頗為相似。因此,藉由數值模擬分別針對日本和台灣兩案例進行研究,幫助了解港區沉箱式碼頭於地震作用下的破壞機制、穩定性和土壤液化範圍,及地表變形等現象,將有助於今後港灣結構之耐震設計和抗液化處理。
本研究所使用之數值模擬程式為有限差分連續體分析之套裝軟體FLAC,以有效應力法進行動態分析。研究範疇包含日本-神戶港和台灣-台中港兩案例之案例研究。首先進行兩案例之資料收集包括:a) 設計斷面圖;b) 現地及室內試驗;c) 地下水位面和地震記錄。依上述所收集之資料,分別進行兩案例之數值模擬。數值模擬共分十大步驟:1) 建立網格;2) 給予材料強度參數;3) 設定邊界條件;4) 加入界面元素並重力平衡;5) 施加海水之側向力;6) 指定地下水位面;7) 力學平衡;8) 使用Finn模式;9) 給予阻尼參數和動態邊界條件;10) 施加地震力。最後將兩案例之數值分析結果,與現地觀察量測值、前人之物理模型試驗和前人之數值模擬結果一一作比較,以分別探討其破壞機制。
由數值分析結果顯示:港島及六甲島和台中港的沉箱式碼頭的主要破壞機制皆為碼頭背填區土壤液化,累積大量超額孔隙水壓,產生水平推力使碼頭有往海側移、沉陷或傾斜的破壞。而孔隙水壓和有效應力部分:a) 遠離沉箱的背填砂區所激發的超額孔隙水壓,較沉箱底部土壤所激發的超額孔隙水壓高;b) 鄰近沉箱的背填砂區有效應力不為零,而是離沉箱較遠處的背填砂區,有效應力值幾乎為零,已達液化狀態。
摘要(英) During the Kobe Earthquake of magnitude 7.2 occurring in 1995, intense liquefaction resulted into the lateral spreading of caisson type quay walls in two artificial islands (Port & Rokko Islands). This type of failure is quite similar to that of Piers #1 to #4A in Taichung Harbor during the 921 Chi-Chi Earthquake in 1999. Accordingly, numerical study of these two failure cases in Kobe and Taichung is very beneficial to help identify the failure mechanism, stability, liquefied zone and ground deformation of backfill behind caisson type quay walls during severe earthquake.
The FLAC 3.2 is the main analysis tool in this study, including a dynamic analysis module. Prior to numerical analysis, the basic data of the above two cases (composed of quay wall cross-section design diagram, in-situ and laboratory test results, groundwater level, earthquake records, and damage document) are compiled. The general procedures of numerical modeling for each case include generating geometric mesh for the port site, assigning material parameters, setting up boundary conditions, adding interface elements and turning on gravity, applying lateral water pressure, leveling groundwater table, checking mechanical equilibrium, using Finn mode, setting dynamic damping and dynamic boundary conditions, exerting earthquake loading, and monitoring the variation in displacement and pore water pressure. The analysis results of both two cases are compared with field observations, and those of shaking table tests and numerical analyses performed by other researchers.
The numerical simulation results of this study show that the failure mechanism of both two cases in Kobe and Taichung is due to liquefaction of backfill (a hydraulic sand fill) during earthquake, the same as that found in literature. The increasing excess pore water pressure in the backfill produces large lateral pulse acting on the caisson, leading to its lateral spreading, rotation and settlement. The excess pore water pressure stimulated in the backfill is higher than that beneath the caisson. The effective stress of soil just behind the caisson does not reach zero during shaking, but the further inside portion of the backfill is liquefied. Learning from this study can provide an insight to understand the interaction between quay wall and backfill during strong ground motion, as well as a future guideline to design a caisson quay wall and soil system sensitive to liquefaction damage.
關鍵字(中) ★ 土壤液化
★  有效應力
★  沉箱式碼頭
★  界面元素
關鍵字(英) ★ caisson type quay wall
★  effective stress
★  interface element
★  liquefaction
論文目次 中文摘要I
英文摘要II
誌謝III
目錄IV
表目錄VIII
圖目錄IX
符號說明XII
第一章緒論1
1.1前言1
1.2研究動機與目的1
1.3研究方法2
1.4論文格式及內容3
第二章文獻回顧6
2.1土壤液化發生機制6
2.1.1 何謂土壤液化6
2.1.2 土壤液化之發生機制6
2.2影響土壤液化的因素與破壞類型7
2.2.1 影響土壤液化的因素7
2.2.2 土壤液化的破壞類型8
2.3液化潛能評估法及防治對策8
2.3.1 液化潛能評估法8
2.3.2 土壤液化之防治對策9
2.4物理模型試驗10
2.4.1震動台試驗10
2.4.2離心機試驗13
2.5數值模擬14
第三章研究方法22
3.1FLAC程式簡介22
3.1.1 FLAC程式概述22
3.1.2 FLAC程式的運算程序22
3.1.3 組合律模式 (Constitutive Model)23
3.1.4 FLAC基本術語定義及指令說明24
3.2 FLAC程式之特殊功能25
3.2.1 界面元素 (Interface)25
3.2.2 地下水 (Groundwater Flow)26
3.2.3 動態分析 (Dynamic Analysis)26
3.2.4 Finn模式 (Finn mode)28
3.3土壤液化之驗證29
3.4FLAC程式用於本數值模擬之分析流程29
第四章日本案例-神戶港34
4.1研究地點背景34
4.1.1 地質概述34
4.1.2 地下水位34
4.1.3 碼頭設計理念35
4.2災害調查35
4.2.1 地震記錄35
4.2.2 破壞情形36
4.2.3 現地與室內試驗36
4.3數值模型之建立37
第五章台灣案例-台中港51
5.1研究地點背景51
5.1.1 地質概述51
5.1.2 潮汐與地下水位52
5.1.3 碼頭設計理念53
5.2災害調查53
5.2.1 地震記錄53
5.2.2 破壞情形54
5.2.3 地質調查與室內試驗55
5.3數值模型之建立56
第六章數值分析結果與討論70
6.1日本案例-神戶港70
6.1.1 沉箱之位移量70
6.1.2 孔隙水壓與有效應力71
6.1.3 地表變形71
6.1.4 破壞機制71
6.2台灣案例-台中港72
6.2.1 沉箱之位移量72
6.2.2 孔隙水壓與有效應力72
6.2.3 地表變形73
6.2.4 破壞機制73
6.3兩案例之比較73
6.3.1 基本性質74
6.3.2 土層狀況74
6.3.3 地震強度74
6.3.4 破壞機制74
第七章結論與建議87
7.1結論87
7.2建議88
參考文獻90
附錄A土壤液化驗證範例之輸入程式A-1
附錄B日本案例-神戶港數值模擬之輸入程式B-1
附錄C台灣案例-台中港數值模擬之輸入程式C-1
作者簡歷
參考文獻 台中港務局,1976,台中港第一期工程完工報告,上、下冊,共456頁。
李崇正、陳慧慈,1999,集集大震中港穀類碼頭側移及沉陷初勘,港灣報導季刊,No. 50,第1~10頁。
李崇正、吳秉儒、熊大綱,2000,以離心模型的震動台試驗探討沉箱碼頭的側向擴展,地工技術,第82期,第5~20頁。
余明山,2000,港灣地區地質改良與液化防治,港灣工程耐震安全評估與災害防治研討會,第7-1~7-26頁。
余明山、鍾毓東、謝百鍾,2000,中部海埔新生地液化災情勘查,地工技術,第77期,第39~50頁。
陳正興、黃國祥,2000,集集地震台中港沈箱滑移之初步分析,港灣工程耐震安全評估與災害防治研討會,第3-1~3-18頁。
陳吉紀、張文欽、藤田建二,2000,阪神震災神戶港碼頭復舊斷面研究,港灣工程耐震安全評估與災害防治研討會,第5-1~5-39頁。
張惠文、廖新興、鄭清江,1992,砂質地盤液化之防治方法探討,地工技術,第38期,第17~29頁。
黃富國、余明山、何政弘,1999,九二一集集大震土壤液化震害與問題探討,土木工程技術,第三卷,第三期,第47~79頁。
黃俊鴻、陳正興,1998,土壤液化評估規範之回顧與前瞻,地工技術,第70期,第23~44頁。
黃俊鴻、楊志文、譚志豪、陳正興,2000,集集地震土壤液化之調查與分析,地工技術,第77期,第51~64頁。
榮民工程事業管理處,1982,台中港第一期工程完工報告,上、下冊,共542頁。
鄭文隆、吳偉康,1985,土壤液化之災害型態與現地研判,地工技術,第9期,第91~103頁。
賴聖耀,2001,921地震台中港1至4A碼頭液化潛能與碼頭穩定性分析,港灣報導季刊,No. 55,第18~29頁。
賴聖耀、謝明志,2000,港灣地區土壤液化與震陷潛能評估,港灣工程耐震安全評估與災害防治研討會,第6-1~6-35頁。
簡連貴、賴聖耀、林敏清,1999,921集集大地震對台中港區港灣設施災損調查與評估,土木水利,第26卷,第3期,第65~76頁。
蘇吉立,2000,台中港1至4A號碼頭921地震災況現地調查分析,港灣報導季刊,No. 51,第1~14頁。
蘇吉立、李延恭,2000,921集集地震後台中港北碼頭災象調查分析,地工技術,第77期,第65~76頁。
Arulanandan, K., Li, X. S. and Sivathasan, K. (2000) “Numerical Simulation of Liquefaction-Induced Deformations,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp.657-666.
Chen, C. H. and Hwang, G. S. (2000) “Preliminary Analysis for Quay Wall Movement in Taichung Harbor during the September 21, 1999, Chi-Chi Earthquake,” Earthquake Engineering and Engineering Seismology, Vol. 2, pp.43-54.
Finn, W. D . L., Lee, K. W. and Martin, G. R. (1977) “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.517-533.
FLAC (1993), Fast Lagrangian Analysis of Continua, Version 3.2, Volume I:User’s Manual, Itasca Consulting Group Inc., U.S.A.
FLAC (1993), Fast Lagrangian Analysis of Continua, Version 3.2, Volume II:Verification Problems and Example Applications, Itasca Consulting Group Inc., U.S.A.
FLAC (1993), Fast Lagrangian Analysis of Continua, Version 3.2, Volume III:Appendices, Itasca Consulting Group Inc., U.S.A.
Ghalandarzadeh, A., Orita, T., Towhata, I. and Yun, F. (1998) “Shaking Table Tests on Seismic Deformation of Gravity Quay Walls,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, No. 2, pp.115-132.
Hamada, M. and Wakamatsu, K. (1998) “Liquefaction-Induced Ground Displacement Triggered by Quaywall Movement,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, No. 2, pp.85-95.
Hatanaka, M., Uchida, A. and Ohara, J. (1997) “Liquefaction Characteristics of a Gravelly Fill Liquefied during the 1995 Hyogo-ken Nanbu Earthquake,” Soils and Foundations, Vol. 37, No. 3, pp.107-115.
Iai, S., Ichii, K., Liu, H. and Morita, T. (1998) “Effective Stress Analyses of Port Structures,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, No. 2, pp.97-114.
Inagaki, H., Iai, S., Sugano, T., Yamazaki, H. and Inatiomi, T. (1996) “Performance of Caisson Type Quay Walls at Kobe Port,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.119-136.
Ishihara, K., Yasuda, S. and Nagase, H. (1996) “Soil Characteristics and Ground Damage,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.109-118.
Kamon, M., Wako, T., Isemura, K., Sawa, K., Mimura, M., Tateyama, K. and Kobayashi, S. (1996) “Geotechnical Disasters on the Waterfront,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.137-147.
Kohama, E., Miura, K., Yoshida, N., Ohtsuka, N. and Kurita, S. (1998) “Instability of Gravity Type Quay Wall Induced by Liquefaction of Backfill during Earthquake,” Soils and Foundations, Vol. 38, No. 4, pp.71-83.
Lee, C. J., Abdoun, T. and Dobry, R. (2000) “Movement of a Quay Wall during an Earthquake,” Proceedings of international workshop on Annual Commemoration of Chi-Chi Earthquake, Vol. III-Geotechnical Aspect, pp.324-335.
Madabhushi, S. P. G. and Zeng, X. (1998) “Seismic Response of Gravity Quay Walls. II:Numerical modeling,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp.418-427.
Martin, G. R., Finn, W. D. L. and Seed, H. B. (1975) “Fundamentals of Liquefaction under Cyclic Loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT5, pp.423-438.
Robertson, P. K. and Wride, C. E. (1998) “Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test,” Canadian Geotechnical Journal, Vol. 35, pp.442-459.
Seed, H. B., Tokimatsu, K., Harder L. F. and Chung, R. M. (1985) “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of the Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp.1425-1445.
Shibata, T. and Teparaksa, W. (1988) “Evaluation of Liquefaction Potentials of Soils Using Cone Penetration Tests,” Soils and Foundations, Vol. 28, No. 2, pp.49-60.
Shibata, T., Oka, F. and Ozawa, Y. (1996) “Characteristics of Ground Deformation due to Liquefaction,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.65-80.
Soga, K. (1998) “Soil Liquefaction Effects Observed in the Kobe Earthquake of 1995,” Proceedings of the Institution of Civil Engineers — Geotechnical Engineering, Vol. 131, pp.34-51.
Tokimatsu, K. and Yoshimi, Y. (1983) “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, Vol. 23, No. 4, pp.56-74.
Tokimatsu, K. and Uchida, A. (1990) “Correlation between Liquefaction Resistance and Shear Wave Velocity,” Soils and Foundations, Vol. 30, No. 2, pp.33-42.
Tokimatsu, K., Mizuno, H. and Kakurai, M. (1996) “Building Damage Associated with Geotechnical Problems,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.219-234.
Towhata, I., Ghalandarzadeh, A., Sundarra, K. P. and Vargas-Monge, W. (1996) “Dynamic Failures of Subsoils Observed in Waterfront Areas,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.149-160.
Yasuda S., Ishihara K., Harada K. and Shinkawa N. (1996) “Effect of Soil Improvement on Ground Subsidence due to Liquefaction,” Soils and Foundations, Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake, pp.99-107.
Zeng, X. (1998) “Seismic Response of Gravity Quay Walls. I:Centrifuge Modeling,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp.406-417.
指導教授 葛德治 審核日期 2001-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明