博碩士論文 88641001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.144.36.141
姓名 高長霖(Chang-lin Kao)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 華南春季冷鋒之個案研究
(Case Study of a Springtime Cold Front in South China)
相關論文
★ 利用MM5模式評估台灣地區風能蘊藏量之研究★ 東亞地區次鋒面氣旋發展的診斷分析
★ 全球氣候模式(NCAR CCM2/3)模擬東亞氣候變遷之研究★ 華南地區梅雨季低層噴流生成之分析
★ MM5對東亞地區梅雨季的模擬及其可預報度之研究★ 台灣附近新生氣旋特性之分析
★ 台灣附近地面強風演變過程之動力分析★ 東亞大氣年際變化之研究與模擬
★ 東亞地區溫度平流變化與鋒生關係之研究★ 東亞地區初夏持續高溫系統之分析
★ 割離低壓的發展對東亞地面寒潮的加強效應★ 初春與初夏東北亞阻塞高壓發展之診斷分析
★ 地表特性對台灣及鄰近地區氣候影響之模擬研究★ 東亞地區降水年際變化之研究
★ 北極震盪(Arctic Oscillation, AO)對東亞地區氣候系統影響之研究★ 氣候變遷對西北太平洋熱帶氣旋的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文選取一個春季在華北地區生成之後南移到華南地區的冷鋒系統,採用中尺度模式(MM5)進行模擬,以探討此春季冷鋒經過華南山區時的鋒面結構演變過程。
當鋒面南移到華南山區時,鋒面移動速度減緩的同時,鋒面低層會受到地形的阻擋作用而變形。在鋒面過山階段,地面鋒附近的水平輻合作用,造成低層鋒生並且引起鋒面前緣低層的強烈上升運動;此外,還有華南山區的地形重力波,以及冷鋒面的重力流特徵,這三者的作用疊加在一起,使得鋒面帶上的垂直運動場呈現上升、下降的間隔式分布。經過鋒生方程中的扭轉項作用,又使得沿著鋒面上也呈現鋒生、鋒消的間隔式分布型態。
當鋒面過山時,雖然因地形影響改變了垂直運動場,造成鋒面爬山階段的鋒消,但是鋒面前的暖濕空氣卻會因鋒面的舉升作用而達到飽和,此種飽和的大氣環境,正符合條件性對稱不穩定(CSI)理論的基本假設。
透過濕位渦(MPV)的分析,可以瞭解在鋒面系統中處於飽和而且MPV<0的區域,若再配合地形與鋒面次環流的舉升運動,這些區域可能就會有CSI的發展。本個案適合CSI發展的區域主要分布在鋒面帶中的暖側,並且呈帶狀分布。這些區域的形成都是因為鋒面帶上的鋒生作用造成,而地形造成的垂直運動場疊加在鋒生次環流上,又是使鋒面帶呈現鋒生、鋒消間隔式分布型態的主要原因,因此,地形作用對於鋒面帶上可能產生CSI的位置就扮演重要的角色。
摘要(英) The PSU/NCAR mesoscale model (MM5) was used to investigate the topographical effect on the structure of a springtime cold front passing East China. The observational analysis shows that the surface frontal system will be retarded and deformed by the topography, when the cold front moves southward to the Wu-I Mountain Range.
Owing to the surface convergence effect, the cold front experiences a low level frontogenesis process when it climbs up the mountains, and hence induces a strong upward motion. Furthermore, both the mountain gravity wave and the gravity current of cold front, can enhance or weaken the upward motion. These three effects enhence the up/down interlaced pattern of the vertical motion and induces the frontogenesis/frontolysis process along the front through the tilting effect.
The lifting of the cold front by the mountains favors the moisture in the warm sector to reach saturation. This condition is consistent with the conditional symmetric instability (CSI) theory. Through the analysis of the moist potential vorticity (MPV) , saturation condition and vertical motion, the result shows that the suitable regions for CSI to develop are distributed over the warm side of front band. So, the topographical effect plays an important role in the formation and distribution of CSI in a frontal band.
關鍵字(中) ★ 對稱不穩定
★ 鋒生函數
★ 地形作用
★ 濕位渦
關鍵字(英) ★ conditional symmetric instability
★ moist potential vorticity
論文目次 中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii
誌謝……………………………………………………………………iii
目錄……………………………………………………………………iv
圖目錄…………………………………………………………………vi
符號說明………………………………………………………………xiii
第一章緒論……………………………………………………………1
1.1鋒面與地形……………………………………………………… 1
1.2條件性對稱不穩定的理論發展………………………………… 2
1.3研究動機………………………………………………………… 5
第二章研究方法…………………………………………………… 7
2.1中尺度數值模式………………………………………………… 7
2.2鋒面不穩定理論………………………………………………… 8
2.2.1對流不穩定…………………………………………………… 8
2.2.2慣性不穩定…………………………………………………… 9
2.2.3對稱不穩定理論……………………………………………… 9
第三章個案選取…………………………………………………… 14
3.1個案的綜觀天氣形勢分析………………………………………14
3.2水氣分析…………………………………………………………16
第四章個案模擬結果驗證與分析………………………………… 18
4.1模擬結果驗證……………………………………………………18
4.1.1海平面、等壓面場……………………………………………18
4.1.2等壓面上溫度梯度分布(熱力場)……………………………19
4.1.3垂直相對渦度(動力場)……………………………………20
4.2模擬結果分析……………………………………………………22
4.2.1鋒面位置的決定………………………………………………22
4.2.2鋒面的垂直剖面結構初步分析………………………………23
4.2.3垂直運動場與水氣分布………………………………………25
4.3低層鋒面帶附近的運動場特徵…………………………………28
4.3.1低層鋒面的重力流現象………………………………………28
4.3.2地形引發的重力波現象………………………………………31
4.3.3鋒面低層的橫向垂直環流……………………………………32
第五章鋒面結構的動力演變……………………………………… 34
5.1鋒生分析…………………………………………………………34
5.2鋒面橫向垂直次環流……………………………………………36
5.2.1理論……………………………………………………………36
5.2.2垂直次環流分析………………………………………………38
5.3對稱不穩定度分析………………………………………………41
5.4溼位渦分析………………………………………………………42
5.4.1等壓面上的MPV分析………………………………………… 43
5.4.2南北向垂直剖面上的MPV分析……………………………… 45
第六章結論與展望………………………………………………… 49
6.1結論………………………………………………………………49
6.2未來研究展望……………………………………………………50
參考文獻…………………………………………………………… 51
附圖………………………………………………………………… 58
參考文獻 丁一匯,1991:高等天氣學。氣象出版社(大陸),792頁。
王建中和丁一匯,1996:一次華北強降雪過程的濕對稱不穩定性研究。中尺度天氣和動力學研究。丁一匯主編,氣象出版社(大陸)。
吳明進,1992:台灣春雨之長期預報。大氣科學,20,199-216。
吳國雄,蔡雅萍和唐曉菁,1995:濕位渦和傾斜渦度發展。氣象學報(大陸),53,387-405。
李振軍和趙思雄,1996:東亞春季強冷鋒結構及其動力學診斷研究。大氣科學(大陸),20,662-672。
肖慶農和伍榮生, 1996: 重力流冷鋒及其受地形的影響。氣象學報(大陸), 54, 456-465.
林松錦和王溫和,1992:梅雨鋒面之鋒生過程分析。大氣科學,20,63-79。
洪秀雄,2006:台灣地區2006年初夏兩次豪雨個案之比較。天氣分析與預報研討論文彙編,1-1~1-19。
洪景山,2002:武夷山地形和海洋邊界層在梅雨鋒面南下過程中扮演的角色。大氣科學,30,275-290。
洪甄聲,1998:華南地區鋒面帶條件對稱不穩度的診斷分析。碩士論文,中央大學大氣物理研究所,104pp。
國立編譯館編訂,1998:氣象學名詞。317頁。
談哲敏,2000:邊界層鋒面結構與動力學。博士論文,南京大學,184頁。
簡芳菁和林勝峰,2004:冬季冷鋒個案之數值研究。大氣科學,32,141-160。
Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one- dimensional cloud model. Mon. Wea. Rev., 105, 270-286.
Anthes, R. A. and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045-1078.
Bannon, P. R., 1983: Quasi-geostrophic frontogenesis over topography. J. Atmos. Sci., 40, 2266-2277.
Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability - a possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945-962.
Bennetts, D. A., and J. C. Sharp, 1982: The relevance of conditional symmetric instability to the prediction of mesoscale frontal rainbands. Quart. J. Roy. Meteor. Soc., 108, 595-602.
Bergeron, T., 1937: On the physics of fronts. Bull. Amer. Meteor. Soc., 18, 265-275.
Berggen, R., 1952: The distribution of temperature and wind connected with active tropical air in the higher troposphere, and tsome remarks concerning clear air turbulence at high altitude. Tellus, 4, 43-53.
Bjerknes, J. and E. Palmen, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publikasjoner, Norske Videnslcaps- Akad. Oslo, 12, No.2, 1-62.
Bjerknes, J. and H. Solberg, 1921: Meteorological conditions for the formation of rain. Geophys. Publ., 2, 1-69.
Bjerknes, J. and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publ., 3, 1-18.
Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints of Third Symposium on Atmospheric Turbulence and Air Quality, Raleigh, NC, 19-22 October 1976, Amer. Meteor. Soc., Boston, 46-49.
Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, 1, Pfafflin and Ziegler, Eds., Gordon and Breach Publ. Group, Newark, 50-85.
Bond, N. A. and R. G. Fleagle, 1985: Structure of a cold front over the ocean. Quart. J. Roy. Met. Soc., 115, 739-759.
Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215-231.
Browning, K. A. and Harrold, T. W., 1970: Air motion and precipitation at a cold front. Quart. J. Roy. Met. Soc., 96, 369-389.
Browning, K. A. and C. W. Pardoe, 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Met. Soc., 99, 619-638.
Byrd, G. P., 1989: A composite analysis of winter season overrunning precipitation bands over the Southern Plains of the United States. J. Atmos. Sci., 46, 1119-1132.
Doswell, C. A. III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3-16.
Ducrocq, V., 1993: Adiabatic and viscous simulations of symmetric instability: structure, evolution, and energetics. J. Atmos. Sci., 50, 23-42.
Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and clod front. Mon. Wea. Rev., 121, 1493-1513.
Egger, J. and K. P. Hoinka, 1992: Fronts and orography. Meteor. Atmos. Phys., 48, 3-36.
Eliassen, A., 1962: On the vertical circulation in frontal zones. Geophys. Publ., 24, 147-160.
Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 2016-2033.
Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric instability. J. Atmos. Sci., 42, 1062-1071.
Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 1805-1816.
Emanuel, K. A., 1990: Appendix to chapter 26b: Notes on the physical mechanisms of mesoscale precipitation bands. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference. D. Atlas, Ed., Amer. Meteor. Soc., 473-476.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.
Fischer, C., and F. Lalaurette, 1995a: Meso-β-scale circulations in realistic fronts. I: Steady basic state. Quart. J. Roy. Meteor. Soc., 121, 1255-1283.
Fischer, C., and F. Lalaurette, 1995b: Meso-β-scale circulations in realistic fronts. II: Frontogenetically forced basic states. Quart. J. Roy. Meteor. Soc., 121, 1285-1321.
Fleagle, R. G., M. Miyake, J. F. Garrett and G. A. McBean, 1982: Storm transfer and response experiment. Bull. Amer. Meteor. Soc., 63, 6-14.
Gall, R. L., R. T. William and T. L. Clark, 1988: Gravity waves generated during frontogenesis. J. Atmos. Sci., 45, 2204-2219.
Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787.
Grell, G. A., J. Dudhia and D. R. Stauffer, 1995: A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note, NCAR/TN-398+ STR, 122pp.
Harrold, T. W., 1973: Mechanism influencing the distribution of prediction within baroclinic disturbances. Quart. J. Roy. Met. Soc., 99, 232-251.
Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741-755.
Hobbs, P. V. and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclone. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39, 280-295.
Holton, J. R., 2004: An Introduction to Dynamical Meteorology, 4th ed, Academic Press, 535pp.
Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233-242.
Hoskins, B. J. and F. P. Bretherton, 1972: Atmospheric frontogenesis models : mathematical formulation and solution. J. Atmos. Sci., 29, 11-37.
Knight, D. J., and P. V. Hobbs, 1988: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XV: A numerical modeling study of frontogenesis and cold-frontal rainbands. J. Atmos. Sci., 45, 915-930.
Kurz, M., 1990: The influence of the Alps on structure and behaviour of cold fronts over Southern Germany. Meteor. Atmos. Phys., 43, 61-68.
Lean, H. W. and P. A Clark, 2003: The effects of changing resolution on mesoscale modeling of line convection and slantwise circulations in FASTEX IOP16. Quart. J. Roy. Meteor. Soc., 129, 2255-2278.
Locatelli, J. D., J. E. Martin and P. V. Hobbs, 1994: A wide cold-frontal rainband and its relationship to frontal topography. Quart. J. Roy. Meteor. Soc., 120, 259-275.
Miller, J. E., 1948: On the concept of frontogenesis. J. Meteorol., 5, 189-171.
Parsons, D. B., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XI: Comparisons between observational and theoretical aspects of rainbands. J. Atmos. Sci., 40, 2377-2397.
Persson, P. O. G., and T. T. Warner, 1993: Nonlinear hydrostatic conditional symmetric instability: Implications for numerical weather prediction. Mon. Wea. Rev., 121, 1821-1833.
Pierrehumbert R. T. and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977-1003.
Ralph, F. M., Z. Mazaudier, M. Crochet and S. V. Venkateswaran, 1993: Doppler sodar and radar wind-profiler observations of gravity-wave activity associated with a gravity current. Mon. Wea. Rev., 121, 444-463.
Reuter, G. W., and N. Aktary, 1995: Convective and symmetric instabilities and their effects on precipitation: Seasonal variations in central Alberta during 1990 and 1991. Mon. Wea. Rev., 123, 153-162.
Reuter, G. W., and M. K. Yau, 1990: Observations of slantwise convective instability in winter cyclones. Mon. Wea. Rev., 118, 447-458.
Reuter, G. W., and M. K. Yau, 1993: Assessment of slantwise convection in ERICA cyclones. Mon. Wea. Rev., 121, 375-386.
Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Met. Soc., 66, 68-87.
Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the Megalopolitan snowstorm of 11-12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 1050-1061.
Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346-362.
Schultz, D. M. and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 2709-2732.
Seltzer, M. A., R. E. Passarelli, and K. A. Emanuel, 1985: The possible role of symmetric instability in the formation of precipitation bands. J. Atmos. Sci., 42, 2207-2219.
Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulation in the vicinity of jet stream-frontal zone system. J. Atmos. Sci., 38, 954-973.
Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 1634-1639.
Shutts, G. J., 1990: SCAPE charts from numerical weather prediction model fields. Mon. Wea. Rev., 118, 2745-2751.
Simpson, J.E., D.A. Mansfield, and J.R. Milford, 1977: Inland penetration of sea breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47-76.
Simpson, J. E., 1997: Gravity currents: in the environment and the laboratory. 2nd ed., Cambridge University Press, 244pp.
Smith, R. K. and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116, 1927-1944.
Thorpe, A. J. and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: structures described by dropsoundings in FRONTS 87. Quart. J. Roy. Met. Soc., 117, 903-941.
Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 1809-1824.
Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060-1082.
Williams, R. T., M. S. Peng and D. A. Zanofski, 1992: Effects of topography on fronts. J. Atmos. Sci., 49, 287-305.
Xu, Q., 1989: Frontal circulations in the presence of small viscous moist symmetric stability and weak forcing. Quart. J. Roy. Meteor. Soc., 115, 1325-1353.
Zehnder, J. A. and P. R. Bannon, 1988: Frontogenesis over a mountaion ridge. J Atmos. Sci., 45, 628-644.
Zhang, D.-L., and H.-R. Cho, 1995: Three-dimensional simulation of frontal rainbands and conditional symmetric instability in the Eady-wave model. Tellus, 47A, 45-61.
指導教授 江火明、曾仁佑
(Huo-ming Jiang、Ren-Yow Tzeng)
審核日期 2008-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明