博碩士論文 88642001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.191.211.66
姓名 李憲忠(Shiann-Jong Lee)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 九二一集集地震三維震源過程與震波傳遞分析
(3D Rupture Process and Wave Propagation Analysis of the 1999 Chi-Chi, Taiwan, Earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型★ 集集地震之震前、同震及震後變形模式研究
★ 台灣地震震源尺度分析:2003年規模>6.0地震分析★ 使用震源機制逆推台灣地區應力分區狀況
★ 地震水井水力學之理論模式改良與發展及同震水位資料分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性★ 中大規模地震斷層參數之同步求解
★ 集集地震同震及震後應力演化與地震活動之相關性★ 2005 年宜蘭雙主震之震源破裂滑移分析
★ 1999 集集地震後之黏彈性鬆弛效應★ 台灣地區大型地震產生的庫倫應力變化與地震活動相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 震源過程分析與強地動模擬在地震物理及危害分析上已是一個非常重要的議題,而高精度的三維震源過程逆推與三維震波傳遞的模擬在這個議題中更是扮演著舉足輕重的角色。在台灣地區中,近年來最受矚目的是1999年9月21日ML=7.3之集集大地震,雖然這個地震為台灣帶來莫大的生命與財產上的損失,卻也提供了地震學者一個絕佳的機會來重新檢視大規模地震的震源與波傳行為。本研究結合平行化三維波傳有限差分法與並列線性逆推技術來分析九二一地震所記錄到之龐大而複雜資訊,接近完整地還原了地震發生時的震源與強地動過程,有助於釐清各區域的強震生成過程。其成果使九二一地震於保存密集而高品質的地震記錄資料外,亦成為世界上少數成功結合高精度三維震源與路徑效應來詳細分析大尺度強地動過程的災害性地震。
透過並列線性逆推技術所求得之高精度震源逆推結果指出,921集集地震的震源總錯動持續時間接近60秒,其破裂過程不論在靜態或動態上均極為複雜;靜態破裂分析指出,主要錯動發生在深度10公里以上的斷層淺部,最大錯動量15.8公尺位在斷層北端轉折區,並向下延伸至15公里深處,此極大錯動區屬於同一發生機制而非獨立事件;動態破裂分析中更可明顯看出,斷層面上南北兩端有著截然不同的破裂行為,南端由滑移速率小但次數較多之重複滑移所構成,錯動持續時間長達30秒,而北端極大破裂區之破裂行為主要由滑移速率極高、持續時間僅10秒之單一錯動所支配。與過去的921地震震源研究做比較,本研究於靜態破裂分佈的解析能力有很大的提升,即使就細部的動態破裂過程來看,此次的分析確實發現許多過去所無法完整呈現的現象。這些高精度的靜態、動態破裂過程,對於後續震源物理與強地動預估等相關研究將可提供更為詳盡的訊息。
結合高解析度破裂過程與平行化三維波傳技術,本研究成功重建了921地震所造成的強烈震動過程。結果指出,車籠埔斷層所產生之地震波動於不同的區域有截然不同的特性與生成過程。複雜的震源破裂行為、斷層面幾何模式與傳播路徑上的速度側向變化等均造成震波隨震央距離有不同的衰減與震動特性。由於車籠埔斷層的低角度逆衝特性,強震動區域明顯集中在斷層上磐,特別是斷層北端之豐原-石岡附近,其下方Aspersity所釋放出的強烈振動能量為震源不均質性最直接而明顯的影響。斷層北方新竹-苗栗一帶受到震源過程中破裂朝北傳播的影響,沿破裂傳播方向上有明顯的Directivity效應,造成強烈的地表振動。而在斷層西部的台中-彰化一帶,雖然座落於下磐區,卻由於三維速度模型中淺層低速區的作用,普遍出現表面波震幅放大現象。至於嘉義以南的區域,其位處在震源破裂方向的相反處,震波建設性累積的效應無法產生,故震動相對較弱。震波於中央山脈中,受到車籠埔斷層面逆衝滑移特性的影響能量快速衰減,但向東進入海岸山脈後,由於近地表速度梯度的急遽變化而產生些微放大。整體而言,集集地震發生後於各地區之強地動的發生行為與過程主要仍是受到強大的震源效應所支配。綜合以上的研究結果指出,結合強地動觀測資料、震源過程研究、精細的三維速度構造與數值模擬技術將是於未來實現強地動預估的重要關鍵。
摘要(英) A complex source process inversion technique including three-dimensional fault geometry, three-dimensional Green’’s functions and parallel non-negative least square inversion are used to explore the high resolution spatio-temporal slip distribution of the 1999 Chi-Chi, Taiwan, Earthquake. The 3D fault geometry was inferred from the aftershocks distributions and high-resolution reflection experiment studies. It shows dip angle of the fault becomes shallower from south to north and near flat at the deeper portion of the fault. The 3D Green’s functions were calculated from a 3D finite-difference code using 3D velocity structure derived from tomographic studies for grid size of 0.5km and time interval 0.05sec. The 3D Green’s functions show significant azimuthally variation of the waveform suggest the necessity of the 3D Green’s function calculations in Taiwan. On account of the 3D fault geometry and 3D Green’s functions, we use parallel linear inversion technique to invert the spatial/temporal slip distribution of the 1999 Chi-Chi earthquake using the dense strong motion waveforms considering huge amount of multiple time windows. Finally, the 3D source parameters derived from the inversion result was used to forward modeling the full-wave 3D wave propagation of the 921 earthquake. Our study here emphasizes the necessary of 3D fault geometry and 3D Green’’s function that correctly account for both the complicated source process and wave propagation effect of the large damaged earthquake. The major achievements of this research are stated below :
A.High resolution 3D source process inversion
Final result is drive from 48 time-windows inversion. The rupture process shows very complex spatio-temporal slip behavior. Major slip area is located at the shallow part of the fault (about 10 km depth). The largest slip, 15.8m, is at about 30 km north of the epicenter which is near the bending of the fault and extend to about 15km depth. The rupture time history at southern and northern parts is entirely different. In southern part, the slip behavior is composed by repeatedly and small slip rate; while the northern part is dominated by single, duration about 10 sec, large slip rate event. Comparing with previous results, the resolution of the static slip distributions is more refined in this study. The same with the dynamic rupture process, there is some phenomena that can only be revealed detail in this study. These high resolution source process analyses can help to promote further study in earthquake physics and strong ground motion prediction.
B.Forward strong ground motion simulation of the 921 Chi-Chi earthquake
Joining the high resolution source process model and parallel 3D wave propagation technique, we have successfully reproduced the strong ground shaking during the Chi-Chi earthquake. Comparisons between the simulation results and observed waveforms from a dense strong motion waveforms clearly demonstrate that the variation of the velocity structure and the complex fault slip process greatly affect the damage during the Chi-Chi earthquake. The source directivity effect produced large amplitudes along the direction of the rupture propagation. Low velocity under shallow part of Coastal Plain generated significant amplified ground motion. Under Central Range, the seismic wave was relatively weak owing to the energy radiation mechanism of the Chelungpu fault. The ground motions were then amplified further by the high velocity gradient under Coastal Range. Finally, the strong ground motion characters at different regions were mainly dominated by intense source effects. The results of this research point out that a close link with strong motion observations, source studies, detailed knowledge of velocity structure, and numerical simulation technology is necessary to make the prediction of strong ground motion feasible in the further.
關鍵字(中) ★ 三維震源過程
★ 九二一地震
★ 三維震波傳遞
關鍵字(英) ★ Chi-Chi Earthquake
★ Source rupture process
★ 3D wave propagation
論文目次 摘要 I
致謝 II
目錄 III
圖目 VI
表目 VIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 本文範疇與內容 3
第二章 台灣地區三維震波傳遞之數值模擬 4
2.1 摘要 4
2.2 研究方法 5
2.2.1 有限差分法 5
2.2.2 PC Cluster與標準化MPI平行語言 15
2.2.3 三維速度模型於平行計算中之設定 16
2.2.4 效能測試 18
2.3 台灣地區三維震波速度模型 20
2.3.1 層析成像法結果 20
2.3.2 三維速度模型測試 21
2.4 模擬結果 27
2.4.1 概述 27
2.4.2 N-S與W-E剖面 30
2.4.3 PGA模擬 34
2.4.3.1 加速度震源時間函數與波場 34
2.4.3.2 Point Source模擬結果 37
2.5 討論與結論 42
2.5.1 結果討論 42
2.4.2 初步結論 47
第三章 921集集地震高精度三維震源過程分析 48
3.1 摘要 48
3.2 研究方法 52
3.2.1 三維格林函數 52
3.2.2 逆推方法 55
3.2.3 多重時間視窗 56
3.2.4 平行化非負最小平方逆推法 59
3.2.5 Parallel NNLS的進階應用 60
3.3 資料處理與模型設定 63
3.3.1 資料來源 63
3.3.2 資料選取 63
3.3.3 資料處理流程 64
3.3.4 斷層模型 67
3.4 模擬結果與討論 70
3.4.1 Multiple Time Window 70
3.4.2 Zero Rupture Delay Time 72
3.4.3 靜態錯動量分佈分析 74
3.4.4 動態破裂過程分析 84
3.4.5 破裂分佈討論 94
3.5 震源破裂分析結論 100
第四章 921集集地震強震過程模擬 101
4.1 摘要 101
4.2 研究方法 104
4.2.1 線性逆推並列計算 104
4.2.2 平行化三維波傳有限差分法 106
4.3 資料與模型設定 110
4.3.1 強震資料分析與處理 110
4.3.2 三維震源參數模型 111
4.3.3 三維速度數值模型建立與設定 112
4.3.4 三維震源模型於平行計算中的設定 113
4.4 強地動模擬結果與討論 115
4.4.1 地表強震記錄模擬 115
4.4.2 地表波場模擬 118
4.4.3 地表PGV模擬 122
4.4.4 震源效應分析 130
4.4.5 路徑效應分析 133
4.4.6 強震過程分析 136
4.5 強地動分析結論 148
第五章 總結 149
5.1 討論與結論 149
5.2 建議與未來展望 152
參考文獻 153
英文摘要 157
作者簡介 158
參考文獻 Cerjan C., D. Kosloff, R. Kosloff, and M. Reshef, 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705-708.
Chen C. H., W. H. Wang and T. L. Teng, 2001. 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, Earthquake: Before and after the mainshock, Bull. Seism. Soc. Am. 91, 1013-1027.
Cheng W. B., 2000. Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations, Terr. Atmos. Oceanic Sci. 11, 643-660.
Chi W. C., D. Dreger, and A. Kaverina, 2001. Finite-source modeling of the 1999 Taiwan (Chi-Chi) Earthquake derived from a dense strong-motion network, Bull. Seism. Soc. Am. 91, 1144-1157.
Clayton, R. W. and B. Engquist, 1977. Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seis. Soc. Am., 6, 1529-1540.
Courboulex, F., M. A. Santoyo, J. F. Pacheco, and S. K. Singh, 1997. The 14 Septemper 1995(M=7.3) Copala, Mexico, earthquake: a study using teleseismic, regional, and local data, Bull. Seism. Soc. Am., 87, 999-1010.
Dewey J. W., 1979. A consumer's guide to instrumental methods for determination of hypocenters: A. W. Hatheway and C. R. McClure, Jr., eds., Geology in the Siting of Nuclear Power Plants, Geo. Soc. of Am. Reviews in Engineering Geology. 4, 109-117.
Furumura, M., T. Furumura and K. L. Wen, 2001. Numerical simulation of Love wave gereration in the Ilan basin, Taiwan, during the 1999 Chi-Chi earthqake, Geo. Res. Lett. 28, 3385-3388.
Furumura, T. and K. Koketsu, 2000. Parallel 3-D simulation of ground motion for the 1995 Kobe earthquake: The compoment decomposition approach, Pure Appl. Geophys., 157, 1921-1927.
Furumura, T. and S. K. Singh, 2002. Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interplate and inslab events, Bull. Seism. Soc. Am., 92, 2110-2125.
Hartzell, S. H. and T. H. Heaton, 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake, Bull. Seism. Soc. Am., 73, 1553-1583.
Hernandez, B., N. Shapiro, S. K. Singh, J. F. Pacheco, F. Cotton, M. Campillo, A. Iglesias, V. Cruz, J. M. Gomez, and L. Alcantara, 2001. Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico(Mw = 7.5)from inversion of strong-motion data, Geo. Res. Lett. 28, 363-366.
Hsu, M. T. and C. Y. Wang, 1969. P wave velocity in the surface layer of the Earth’s crust in Taiwan, Meteo. Bull., Taiwan Weather Bureau, 15, 14-24.
Lee C. N. and Y. B. Tsai, 1978. Crust structure of Taiwan from P-wave arrival times, Proc. Geol. Soc. China, 21, 111-127.
Lee S. J. and K. F. Ma, 2000. Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, Terr. Atmos. Ocean. Sci. 11, 591-608.
Lee Shiann-Jong and Kuo-Fong Ma, 2003. Fault Geometry-An Examine for the Fault Models of the 1999 Chi-Chi, Taiwan, Earthquake. (In preparation)
Lee W. H. K., T. C. Shin, K. W. Kuo, K. C. Chen, and C. F. Wu, 2001. CWB free-field strong-motion data from the 21 September Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am. 91, 1370-1376.
Lin C. H. and S. W. Roecke, 1993. Deep earthquakes beneath central Taiwan: Mantle shearing in an arc-continent collision, Tectonics, 12, 745-755.
Lin, C. H., 1996. Crust structures estimated from arrival differences of the first P-waves in Taiwan, J. Geol. Soc. China, 39, 1-10.
Ma K. F., J. Mori, S. J. Lee, and S. B. Yu, 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am. 91, 1069-1087.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin and Jim Mori (1999), The Chi-Chi Taiwan Earthquake: Large surface displacements on inland thrust fault, EOS, 80, 605-611.
Ma, K. F., J. H. Wang, and D. Zhao, 1996. Three dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105.
Oglesby D. D. and S. M. Day, 2001. Fault Geometry and Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake, Bull. Seism. Soc. Am. 91, 1099-1111.
Rau R. J. and F. T. Wu, 1995. Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett. 135, 517-532.
Roecker S. W., 1987. Three dimensional P and S wave velocity structures beneath Taiwan: Deep structure beneach an arc-continent collision, J. Geophys. Res., 92, 10547-10570.
Suppe J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 17, 1-16.
Tasi Y. B., T. M. Yu, H. L. Chao and C. P. Lee, 2001. Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, Earthquake of 21 September, 1999, Bull. Seism. Soc. Am. 91, 1298-1309.
Wald D. J., and T. H. Heaton, 1994. Spatial and temporal distribution of slip for the 1992 Landers, California earthquake, Bull. Seism. Soc. Am. 84, 668-691.
Wald, D. V., T. H. Heaton and K. W. Hudnut, 1996. Slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data, Bull. Seisn. Soc. Am., 86, s49-s70.
Wang C. Y., C. H. Chang, and H. Y. Yen, 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin0skinned thrust model, Terr. Atmos. Oceanic Sci. 11, 609-603.
Wang C. Y., C. L. Li and H. Y. Yen, 2002. Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics, Geo. Res. Lett. 29.
Wang, T. K. and C. H. Chiang, 1998. Imaging of arc-arc collision in the Ryukyu forearc region offshore Hualien from TAICRUST OBS Line 16, Terr. Atmos. Oceanic Sci. 9, 329-344.
Wu C., M. Takeo, and S Ide, 2001. Source process of the Chi-Chi Earthquake: A joint inversion of strong motion data and global positioning system data with a multifault model, Bull. Seism. Soc. Am. 91, 1128-1143.
Yagi, Y. and Kikuchi, M., 2000. Source rupture process of the Chi-Chi, Taiwan earthquake of determined by seismic wave and GPS, EOS Trans. AGU, 81(22), s21A-05.
Yeh Y. H. and Y. B. Tsai, 1981. Crust structure of central Taiwan from inversion of P-wave arrival times, Bull. Inst. Earth Sci., Academia Sinica, 1, 83-102.
Yoshida, S., Koketsu, B. Shibazaki, T. Sagiya, T. Kato and Y. Yoshida, 1996. Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth 44, 437-454.
Zeng Y. and C. H. Chen, 2001. Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am. 91, 1088-1098.
王乾盈、顏宏元、周錦德、孫志財、張漢忠、李俊延、邱俊達、翁群評,2000。集集地震車籠埔斷層面測繪及其構造意義,第八屆台灣地區地球物理研討會論文集,第78-91頁。
何美儀,1994。台灣西部地區三維速度構造,國立中央大學地球物理研究所碩士論文。
吳相儀,2000。台灣地區中大型地震震源參數分析,國立中央大學地球物理研究所碩士論文。
李坤松、陳浩維,2000。台灣地區三維速度構造的評估,第八屆台灣地區地球物理研討會論文集,第97-102頁。
李憲忠,1999。以強地動波形模擬研究台灣中西部S波速度構造,國立中央大學地球物理研究所碩士論文。
李憲忠、馬國鳳,2000:利用同震變形研究921集集地震之震源破裂,第八屆台灣地區地球物理研討會論文集,29~37頁。
侯進雄、賴典章、費立沅、王菁穗、陳文和,2000。高精度測量在車籠埔活動斷層監測與調查上之應用研究-九二一地震前後量測結果比較,經濟部中央地質調查所特刊十二號,第191-209頁。
馬國鳳,1987。定差法應用於SH波之傳遞,國立台灣大學海洋研究所碩士論文,第5-17頁。
陳燕玲,1995。台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文。
鄭錦桐、李錫堤、蔡義本,2000。集集大地震斷層破裂面幾何形貌及強地動衰減模式,中國地質學會89年年會論文集,第21-23頁。
指導教授 陳浩維、馬國鳳
(How-Wei Chen、Kuo-Fong Ma)
審核日期 2003-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明