博碩士論文 88642005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.204.227.117
姓名 黃怡陵(Yi-Ling Huang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 震源破裂過程及地表強地動特性之陣列分析研究
(Study of source rupture process and strong ground-motion characteristics by using the seismic array analysis)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 台灣西南部地區地震釋放之能量與規模關係之研究
★ 高屏地區場址效應之探討★ 以地震儀陣列及基因演算法推估近地表剪力波波速
★ 臺灣中部地區強地動波形模擬★ 利用接收函數法推估蘭陽平原淺層速度構造
★ 蘭陽平原場址效應及淺層S波速度構造★ 探討不同地質區強震站之淺層S波速度構造
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用接收函數法分析台灣深部地殼構造★ 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文提要
1995年阪神地震,造成日本阪神地區人員嚴重傷亡,城市的重建與受災人民的安置經歷數年未盡,龐大的經濟財產和社會成本損失無以估數。1999年921地震,強大的震波能量造成台灣地區許多樓房倒塌傾毀,除了有價物質與社會成本損失外,受傷喪生的生命損失更無法以金錢來衡量。台灣與日本同處環太平洋地震帶,對於強震防災更應以此經驗為鑑。本論文的第一部份研究為「震源成像模擬:探討觀測震源破裂過程之地震儀陣列最佳化設計」。此部份章節提出一套簡單實驗,利用波束聚集法(Beam-forming Method)反求震源的破裂過程,找出觀測震源破裂的最適化測站分佈,對地震儀陣列的規劃提供重要訊息以應用於潛在斷層區作不同的測站分佈模擬,並可加以參考現有地質資料、斷層構造、與地震活動(seismicity)分佈,求出最適測站陣列分佈,以期利用有限測站獲得最佳的破裂過程解析,提供地震網設計規劃之參考。本論文的第二部份研究為「地表強地動時空分佈模擬:探討1999年9月21日集集地震所引致之地表強地動時空分佈特性」。此部份研究是藉由計算近斷層地區強地動的時空分佈特性,去調查斷層的傾角、地下介質速度、與斷層破裂速度是如何的影響地表強地動能量的分佈,並嘗試去歸結在這些因素影響下地表強地動時空分佈所顯現出來的特徵,以釐清斷層破裂過程與地下速度構造所造成之地表近場二維強地動分佈有何顯著特性。本論文第三部份研究為「利用頻率–波數頻譜分析法分析2002年3月31日台灣東部外海之331地震在台北盆地所引致之強地動複雜效應」。此部份研究利用氣象局強震網於台北盆地所收集到之331地震資料進行分析,藉以了解穿越台北盆地的震波在不同頻段中能量分佈的特性以及震波在入射台北盆地後如何受到盆地的影響,希望釐清台北盆地地形與當地場址岩性對地動能量的匯聚有何影響,並期望能更進一步在數值模擬研究中提供有關台北盆地響應(response)與地下速度構造的資料,進而可以對未來可能發生的大地震進行重要都會區強地動預估,以期達到防災之研究意義。
摘要(英) ABSTRACT
The 1995 Kobe, Japan, earthquake and the 1999 Chi-Chi, Taiwan, earthquake, both induced several thousand human casualties and significant property losses near their source areas. The 2002 Hualien offshore, Taiwan, earthquake induced strong ground-motion in the Taipei basin, and caused minor damage near its epicenter but significant damage in Taipei, about 110 km from the epicenter. Taiwan is located in the circum-Pacific earthquake zone with a high population density. Earthquake source rupture process and strong ground-motion studies are always important issues in Taiwan to reduce seismic hazards.
The first part of this thesis is “Numerical modeling for earthquake source imaging: Implications for array design in determining the rupture process.” The aim of this study is to develop a numerical method to evaluate the optimum seismic station distribution for imaging the source rupture process of an earthquake. Based on the beam-forming technique, the source rupture distribution of an earthquake can be reconstructed through theoretical travel time correction and waveform stacking. Numerical tests show that this method successfully reconstructs the main displacement distribution from an assumed source rupture plane. In accordance with assumed fault models, seismic waveforms are numerically generated as input data for further source imaging. From synthetic seismograms, we reconstructed the rupture distribution of these assume earthquake sources, and analyzed error systematically. Results of this study indicate that receiver distribution types really affect the successful reconstruction of the slip distribution. Furthermore, parameters such as dip angles and frequency content also play important roles in reconstructing earthquake sources. The proposed method is simple, inverse efficiently, and no initial condition required. Further applications of this method are suggested to image source rupture from near field strong motion observations and to design seismic array to effectively observe seismic rupture properties.
The second part of this thesis is “Simulation of near source two-dimensional wave field and its application to the study of ground motion characteristics of the 1999 Chi-Chi, Taiwan Earthquake.” The characteristics of near source two-dimensional strong ground-motion resulting from complex fault rupture processes and velocity structures have been examined based on two-dimensional wave field modeling. To construct the two-dimensional surface seismic wave field, the synthetic seismogram of each grid space was simulated by theoretical Green’’s functions. Numerical experiments were constructed by testing different source parameters and velocity structures. The analysis undertaken in this study can be considered as a two-dimensional seismic waveform analysis and offered as a wider view for studying the wave propagation from a large earthquake. Results of this study provide significant information about the temporal and spatial wave field snapshots on the near source area. It is found that the wave fields are strongly affected by the changes of fault geometries, rupture velocities and near fault seismic velocity structures. In this study, the newly developed wave field simulation procedure is applied to analyze the near source ground motion characteristics of the 1999 Chi-Chi, Taiwan earthquake. Summing up the modeling results and comparing with the observed near source wave field of the Chi-Chi earthquake, we find that the Chelungpu fault has lower seismic velocity in the footwall than in the hanging wall, and seismic velocities of the footwall side, at least on its surface, are lower than its apparent rupture velocities.
The third part of this thesis is “Using the frequency-wavenumber spectrum analysis method to analyze the complex effects of strong ground-motion due to the March 31, 2002, Hualien offshore earthquake in the Taipei basin.” The ground motion snapshots in the northern Taiwan area during the MW 7.0 eastern Taiwan offshore earthquake of 31 March 2002 have been reconstructed (Huang et al., 2002). Those snapshots displayed complicated wave propagation and complex direction of ground motion in the Taipei basin. The major shocks during the earthquake of 31 March 2002 were arisen from S-wave later phases and dominate in its radial direction. Those phases could be basin induced surface waves, which converted from body waves through complicated topography of Taipei basin, and made the large shock in the eastern edge and western portion of Taipei basin. In this study, we tried to investigate the characteristics of the converted seismic wave amplitude in different frequency bands with respect to the basin topography and rock site properties. The recorded ground motions from dense seismic network have been analyzed by frequency-wavenumber spectrum analysis method. Results of this study show that: 1. The seismic wave phases have strongly bent through it pass the Taipei basin. 2. The large-amplitude phase (SmS) and the site amplification effect on ground motion were responsible for the maximum peak ground motion associated with the significant damage in the Taipei basin during the Hualien offshore earthquake. To rely on frequency-wavenumber spectrum analyze, results of this study could provide the researchers much useful information to constrain the further three-dimensional numerical simulation for the basin response and velocity structure, and to predict ground motions of the further large earthquakes.
關鍵字(中) ★ 偏向續達波
★ 視速度
★ 波束聚集法
★ 近震源二維強地動時空分佈
★ 頻率–波數頻譜分析法
關鍵字(英) ★ frequency-wavenumber spectrum analysis method
★ the Chi-Chi earthquake
★ back-azimuth
★ apparent velocity
★ temporal and spatial distribution snapshots of g
★ source imaging
★ later phase bending
★ rupture process
★ beam-forming
★ seismic array design
★ near source two-dime
論文目次 目 錄
論文提要..………………………………………………………………… i
誌謝..……………………………………………………………………… vi
目錄..……………………………………………………………………… vii
圖目……………………………………………………………………….. x
表目……………………………………………………………………….. xii
第一章 序論..…………………………………………………………….. 1
1-1引言………………………………………………………….. 1
1-2各章節研究動機與目的…………………………………….. 1
第二章 震源成像模擬:探討觀測震源破裂過程之地震儀陣列最
佳化設計…………………………………………………………. 5
2-1前言…………………………………………………………... 5
2-2研究方法……………………………………………………... 6
2-2-1波束聚集法………………………………..…………... 6
2-2-2計算合成震波…………………………………………. 7
2-2-3重建震源破裂面上之錯動能量分佈…………………. 8
2-3模型與結果…………………………………………………... 9
2-4討論與結論………………………………………………….. 12
第三章 地表強地動時空分佈模擬:探討1999年9月21日集集地
震所引致之地表強地動時空分佈特性………………………… 25
3-1前言…………………………………………………………. 25
3-2研究方法與模型建構………………………………………. 25
3-2-1斷層面傾角的影響………………………………….. 29
3-2-2速度構造的影響…………………………………….. 29
3-2-3不均一破裂速度的影響……………………………... 30
3-3分析結果…………………………………………………….. 30
3-3-1斷層面傾角的影響…………………………………... 30
3-3-2速度構造的影響……………………………………... 30
3-3-3不均一破裂速度的影響……………………………... 31
3-4討論………………………………………………………….. 31
3-4-1 921集集地震………………………………………… 31
3-4-2 921集集地震強地動資料與本章節的線性波前特性
……………………...……………………………….… 32
3-5結論………………………………………………………….. 32
第四章 利用頻率–波數頻譜分析法分析2002年3月31日台灣東
部外海之331地震在台北盆地所引致之強地動複雜效應
……………………………………………………………………. 46
4-1前言………………………………………………………….. 46
4-2台北盆地及其鄰近區域地質簡介………………………….. 47
4-2-1位置與地形…………………………………………... 47
4-2-2地質概況……………………………………………... 48
4-3資料與研究方法…………………………………………….. 51
4-3-1使用資料……………………………………………... 51
4-3-2使用資料之時間修正………………………………... 51
4-3-3分析方法……………………………………………... 51
4-3-4 陣列響應測試……………………………………….. 52
4-3-5分析之時間段………………………………………... 52
4-3-6分析頻段……………………………………………... 53
4-4分析結果…………………………………………………….. 53
4-5討論………………………………………………………….. 54
4-6結論………………………………………………………….. 56
第五章 總結………………………………………………………………. 70
參考文獻…………………………………………………………………... 72
附錄一……………………………………………………………………... 77
附錄二……………………………………………………………………... 82
附錄三……………………………………………………………………... 85
參考文獻 參考文獻
Aki, K. and P. G. Richards, 1980: Quantitative Seismology: Theory and Methods. M. H. Freeman and Co., San Francisco, 932 pp.
Boore, D. M., 1972: Finite-difference methods for seismic wave propagation in heterogeneous materials, in Methods in computational physics. 11, B. A. Bolt, ed., Academic Press, Inc, 1-36.
Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE., 57, 1408-1418.
Capon, J., 1973: Signal processing and frequency wavenumber spectrum analysis for a large aperture seismic array, Methods in Computational Physics. 13, ed. B. Bolt, New York, Academic, 1-59.
Cerveny, V., 1985: Gaussian beam synthetic seismograms. J. Geophys., 58, 44-72.
Chen, K. C., 2003: Strong ground motion and damage in the Taipei basin from the Moho reflected seismic waves during the March 31, 2002, Hualien, Taiwan earthquake. Geophys. Res. Lett., 30 (11), 5-1-5-4. (doi:10.1029/2003GL017193)
Cheng, W. B., 2000: Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations. TAO, 11, 643-660.
Cohee, B. P. and G. C. Beroza, 1994: Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics. Bull. Seism. Soc. Am., 84, 692-712.
de Hoop, A. T., 1960: A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res., B8, 349-356.
de Hoop, A. T., 1961: Theoretical determination of the surface motion of a uniform elastic half-space produced by a dilatational, impulsive point source. LaPropagation des Ebranlements dans les Milieux Heterogenes, Colloques Internationaux du Centre National de la Recherche Scientifique, Marseille, 21-32.
Dalguer, L. A., K. Irikura, J. D. Riera, and H. C. Chiu, 2001: Fault dynamic rupture simulation of the hypocenter area of the thrust fault of the 1999 Chi-Chi (Taiwan) earthquake. Geophys. Res. Lett., 28, 1327-1330.
Das, S. and P. Suhadolc, 1996: On the inverse problem for earthquake rupture: The Haskell-type source model. J. Geophys. Res., 101, 5725-5738.
Dreger, D., J. Ritsema, and M. Pasyanos, 1995: Broadband analysis of the 21 September, 1993 Klamath Falls earthquake sequence. Geophys. Res. Lett., 22, 997-1000.
Fukuyama, E., 1991: Inversion for the rupture details of the 1987 east Chiba earthquake, Japan, using a fault model based on the distribution of relocated aftershocks. J. Geophys. Res., 96, 8205-8217.
Fukuyama, E. and T. Mikumo, 1993: Dynamic rupture analysis: Inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake (M=6.5). J. Geophys. Res., 98, 6529-6542.
Hartog, J. R. and S. Y. Schwartz, 1996: Directivity analysis of the December 28, 1994 Sanriku-oki earthquake (Mw=7.7), Japan. Geophys. Res. Lett., 23, 2037-2040.
Huang, B. S., 1992: A program for two dimensional seismic wave propagation by the pseudo-spectrum method. Computers & Geosciences, 18, 2/3, 289-307.
Huang, B. S., 2000: Two-dimensional reconstruction of the surface ground motions of an earthquake: the September 21, 1999, Chi-Chi, Taiwan Earthquake. Geophys. Res. Lett., 27, 3025-3028.
Huang, B. S., 2001: Evidence for azimuthal and temporal variations of the rupture propagation of the 1999 Chi-Chi, Taiwan Earthquake from dense seismic array observations, Geophys. Res. Lett., 28, 3377-3380.
Huang, B. S., K. C. Chen, W. G. Huang, J. H. Wang, T. M. Chang, R. D. Huang, H. C. Chiu, and C. C. P. Tsai, 2000: Characteristics of strong motion across a thrust fault tip from the September 21, 1999, Chi-Chi, Taiwan Earthquake. Geophys. Res. Lett., 27, 2729-2732.
Huang, W. G. and Y. T. Yeh, 1990: The characteristics of microtremors at the site of SMART1 array. TAO, 1, 225-242.
Ide, S. and M. Takeo, 1996: The dynamic rupture process of the 1993 Kushiro-oki earthquake. J. Geophys. Res., 101, 5661-5675.
Iida, M., T. Miyatake, and K. Shimazaki, 1988: Optimum strong-motion array geometry for source inversion. Earthquake Engineering and Structural Dynamics, 16, 1213-1225.
Johnson, L. R., 1974: Green’s function for Lamb’s Problem. Geophy. J. R. astr. Soc., 37, 99-131.
Kikuchi, M., Y. Yagi, and Y. Yamanaka, 2000: Source process of the Chi-Chi, Taiwan earthquake of September 21, 1999 inferred from teleseismic body waves. Bull. Earthq. Res. Inst. Univ. Tokyo, 75, 1-13.
Lacoss, R. T., E. J. Kelly, and M. N. Toksoz, 1969: Estimation of seismic noise structure using array. Geophysics, 29, 21-38.
Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai, 2001: Site classification of Taiwan free-field strong-motion stations, Bull. Seism. Soc. Am., 91, 1283-1297.
Lee, S. J. and K. F. Ma, 2000: Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data. TAO, 11, 591-608.
Ma, K. F., T. R. A. Song, S. J. Lee, and H. I. Wu, 2000: Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (Mw 7.6) – inverted from teleseismic data. Geophys. Res. Lett., 27, 3417-3420.
Oglesby, D. D. and S. M. Day, 2001: The effect of fault geometry on the 1999 Chi-Chi (Taiwan) earthquake. Geophys. Res. Lett., 28, 1831-1834.
Schwartz, S. Y. and L. J. Ruff, 1985: The 1968 Tokachi-Oki and the 1969 Kurile Islands Earthquakes: Variability in the rupture process. J. Geophys. Res., 90, 8613-8626.
Shin, T. C., 1993: Progress summary of the Taiwan strong motion instrumentation program. Symp. on the Taiwan strong motion instrumentation program, 1-10.
Shin, T. C., K. W. Kuo, W. H. K. Lee, T. L. Teng, and Y. B. Tsai, 2000: A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake. Seism. Res. Lett., 71, 24-30.
Tada, T., K. Shimazaki, and S. Tsuboi, 1993: Analysis of short-period P waves from the 1989 Macquarie ridge earthquake using a broadband array in Japan. Geophys. Res. Lett., 4, 269-272.
Wang, C. Y., C. H. Chang, and H. Y. Yen, 2000: An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model. TAO, 11, 609-630.
Wang, C. Y., W. C. Hsiao, and C. T. Sun, 1994: Reflection seismic stratigraphy in the Taipei basin (I) – Northern Taipei basin. J.Geol. Soc. China, 37, 69-95.
Wang, C. Y., Y. H. Lee, and H. C. Chang, 1996: P- and S-wave velocity structures of the Taipei basin. Symposium on Taiwan strong motion instrumentation program (II), Central Weather Bureau, 171-177.
Wang, C. Y., Y. L. Tsai, and M. L. Ger, 1995: Reflection seismic stratigraphy in the Taipei basin (II) – Western and southern Taipei basin. J.Geol. Soc. China, 38, 141-172.
Wang, C. Y., Y. H. Lee, M. L. Ger, and Y. L. Chen, 2004: Investigating subsurface structures and P- and S-wave velocities in the Taipei basin. TAO, 15, 609-627.
Wen, K. L. and H. Y. Peng, 1998: Site effect analysis in the Taipei basin: Results from TSMIP network data. TAO, 9, 691-704.
Wen, K. L., H. Y. Peng, L. F. Liu, and T. C. Shin, 1995a: Basin effects analysis from a dense strong motion observation network. Earthq. Eng. Struct. Dyn., 24, 1069-1083.
Wen, K. L., L. Y. Fei, H. Y. Peng, and C. C. Liu, 1995b: Site effect analysis from the records of the Wuku downhole array. TAO, 6, 285-298.
Yeh, Y. H., C. H. Chen, and T. L. Teng, 1988: Study on focusing of seismic wave energy in Taipei basin: I. A dynamic ray-tracing approach, Procs. CCNAA-AIT Joint Seminar on Research for Multiple Hazards Mitigation, Taipei, Taiwan, 107-120.
Yeh, Y. H. and Y. B. Tsai, 1981: Crustal structure of central Taiwan from inversion of P-wave arrival times. Bull. Inst. Earth Sci., Academia Sinica, 1, 83-102.
王執明,鄭穎敏,王源,1978:台北盆地之地質及沉積物研究。台北市政府養護工程處委託台北市地盤沉陷研究工作,共24頁。
林朝棨,周瑞燉,1984:台灣地質。台灣省文獻委員會,共450頁。
陳正祥,1993:台灣地誌-中冊。南天書局有限公司,401-908。
陳正祥,1993:台灣地誌-下冊。南天書局有限公司,909-1360。
黃柏壽,陳國誠,黃文紀,黃怡陵,2003:Reconstracted ground motions in the northern Taiwan area duringthe M 7.1 eastern Taiwan offshore earthquake of 31 March 2002. 第九屆台灣地區地球物理研討會論文集,175-176。
溫國樑,2002:台北盆地之震災與盆地效應。331地震災害調查研討會,共10頁。
指導教授 溫國樑、黃柏壽
(Kuo-Liang Wen、Bor-shouh Huang)
審核日期 2005-5-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明