博碩士論文 88643006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.235.239.156
姓名 黃成勇(Cheng-Yung Huang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 GPS掩星觀測反演與反演誤差探討
(Data retrieval of GPS radio occultation.)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ 微波輻射計數位相關器之設計與實現★ GPS與探空氣球資料觀測可降水量 與降雨之關係
★ 利用GPS訊號估算對流層斜向水氣含量之研究★ 利用遙測影像反演水稻田蒸發散量 之研究
★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究★ 利用MODIS影像於水稻田蒸發散之研究
★ 分析以全球定位系統近即時估計可降水之可行性★ 對流層延遲效應與全球定位系統高程定位之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 掩星觀測為利用低軌道衛星接收GPS衛星穿過大氣層的訊號,依訊號的都卜勒效應,計算大氣參數和電離層電子濃度剖面。台灣即將發射六顆低軌道衛星接收GPS訊號以觀測地球大氣結構,運作之後將提供涵蓋全球的觀測資料,預計將提供國內電離層和大氣層科學研究和天氣方面相當多的資料。目前掩星觀測反演大氣參數技術主要由美國UCAR開發,本論文研究目的為開發本土性的反演掩星參數軟體。期待從掩星觀測的研究上,發展自行的反演掩星能力,除了學習國外的反演技術外,也能精益求精,開發出更好更精準的反演大氣參數技術。
掩星反演由低軌道衛星量測到的GPS訊號都卜勒平移量,換算成訊號因為大氣電離層電子濃度梯度和大氣中性折射率梯度造成的訊號偏折角,再由偏折角反演出大氣電子濃度和大氣折射度,以及大氣壓力和溫度隨高度的剖面。訊號在介質傳遞時,會因為大氣介質的不規則分佈,如水氣變化、重力波、電離層擾動或閃爍現象等造成訊號的多路徑效應及訊號震幅的擾動。另外反演技術和理論的不盡理想、觀測技術的誤差和觀測資料解析度上的限制,都會造成反演精度上的誤差。本文除了介紹掩星反演技術外,也將利用訊號路徑覓跡法,模擬掩星觀測訊號震幅和相位,藉此探討掩星訊號傳遞特性和影響反演精度的因素,並且改善大氣反演技術。在本文中,模擬的誤差包括觀測解析度對反演的影響、多路徑效應、繞射現象、超折率現象等。模擬的結果說明多路徑效應的確為影響反演精度的主要因素,在訊號震幅非常弱時,繞射現象影響將變大。在超折率發生時,在超折率現象以下的區域,反演的精度都將受到影響。
在反演大氣參數時,電離層對訊號的影響將變成反演大氣參數的誤差。傳統的電離層校正方式,可消除與載波頻率平方成反比的遲延量,但是幾何遲延和更高階的電離層遲延仍無法完全校正。本論文提出一新的電離層校正方式,根據電離層對幾何遲延和路徑遲延相對載波頻率的特性,分別對幾何遲延和路徑遲延做校正。由模擬的結果和實際的掩星觀測資料都獲得更好的校正結果。
在本文比較了幾何光學反演法和全波譜反演法反演結果,在幾何光學反演法上,本文改進了訊號平滑的方式。在掩星訊號越接近地表時,訊號強度因穿過的大氣層厚度較厚,訊號偏折也較大,所以訊號強度較弱,容易受到噪音影響或訊號接收技術的限制。由我們改進的技術,比較適合處理掩星訊號是受到噪音影響的狀況,全波譜等等利用傅利業轉換的反演方法,較適合處理多路徑影響的掩星觀測訊號。目前的掩星觀測解析度,只能解出較大空間尺度的多路徑效應,對於小尺度的多路徑效應仍無法求解。
有本文反演的大氣參數與UCAR反演的結果,趨勢上大致相符。未來將持續改進反演技術,期待在福爾摩沙三號衛星升空之後,能夠對掩星觀測資料做精準的反演和分析。
摘要(英) Radio occultation technique has been used in planetary science to obtain reliable and accurate temperature profiles of the other planets’ atmosphere for decades. It relies on the fact that radio waves are bent and delayed due to the gradient of atmospheric refractivity along-ray-path. With the advent of Global Positioning System (GPS), it becomes possible to retrieve the refractivity and temperature profiles of the Earth’s atmosphere from the occultation data. After the successful mission achieved by the Microlab 1 launched in 1995, Taiwan will implement her own space occultation mission called Formosat-3 to be launched in 2006. In this dissertation, retrieval algorithms to retrieve atmospheric variable profiles from radio occultation data will be discussed with the emphasis on the issue of ionospheric influence.
There are systematical errors associated with ionospheric influence in retrieving key atmospheric parameters from radio occultation (RO) soundings. In order to obtain better-quality retrievals, we develop a new method, thereafter called National Central University Radio Occultation (NCURO) scheme, to reduce the ionospheric influence. The excess phase is divided into two parts, namely geometric delay and path delay (delay along ray path due to refractivity effect). An excess phase equation is presented and implemented in the NCURO scheme whose performance is evaluated through comparisons with model simulation and experimental data. The model simulation is based on the use of the ionospheric model IRI-2001 and atmospheric model NRLMSISE-00. Results show that the NCURO scheme significantly reduces the ionospheric influence at altitudes above 70 km as does the scheme presented in the literature, and provides better corrections for the atmospheric profile.
The occultation data are simulated by ray tracing method for discussing the influence of multipath and superrefraction. The accuracy of RO is reduced by superrefraction below superrefraction region. The amplitude and excess curves of observation RO data are similar to our simulation results of multipath and diffraction. The multiapth seems to be the dominant error source while the water vapor enhance below 7 kilometer. The diffraction influence is stronger while the amplitude of the GPS signals is weaker.
關鍵字(中) ★ 掩星觀測
★ 福衛三號
★ 全球定位系統
關鍵字(英) ★ occultation
★ GPS
★ Formosat-3
論文目次 誌謝 III
摘要 IV
英文摘要 VI
專有名詞對照 VII
目錄 VIII
圖目錄 I
前言 1
第一章 掩星反演介紹 3
1.1 掩星反演的架構 3
1.2 文獻回顧 4
第二章 大氣參數反演的原理和方法 9
2.1 掩星法反演大氣參數原理 9
2.1.1 光程與訊號遲延量 9
2.1.2 光學路徑 10
2.1.3 布蓋規則 10
2.1.4 都卜勒平移量 11
2.1.5 偏折角 12
2.1.6 偏折角與大氣折射度-阿貝耳轉換推導 12
2.1.7 折射率與大氣折射度 15
2.1.8 電離層的影響 17
2.2 反演大氣參數資料流程 18
2.2.1 由低軌道衛星所收到的訊號計算都卜勒效應 18
2.2.2 訊號平滑或濾波 19
2.2.3 由都卜勒效應計算訊號切點半徑偏折角 20
2.2.4 電離層效應校正 21
2.2.5 反演大氣折射係數剖面 21
2.2.6 反演大氣壓力及乾溫度剖面 23
第三章 掩星資料模擬與誤差分析 24
3.1 光程函數 24
3.2 路徑覓跡法 28
3.3 路徑覓跡方法與參數反演方法誤差分析 30
3.4 各式天氣狀況模擬與反演誤差分析 34
3.5 超折射率現象 38
3.5.1 超折射率的定義 38
3.5.2 探空氣球資料分析折射率現象 41
3.6 訊號振幅模擬 49
3.7 多路徑效應 52
3.8 光繞射現象對訊號的影響 61
3.8.1 克希荷夫尺度繞射理論 61
3.8.2 克希荷夫尺度繞射理論模擬方式 63
3.8.3 克希荷夫尺度繞射理論模擬結果 67
第四章 電離層校正 71
4.1 電離層校正傳統方法 71
4.2 Syndergaard校正電離層方法 73
4.3 NCURO校正電離層方法 74
4.4 結合傳統電離層Lc(t)和Lc(a)校正法原理介紹 82
4.5 影響掩星觀測資料各項因素模擬與探討 84
4.6 傳統無電離層項線性組合、Syndergaard和NCURO校正電離層方法比較 87
第五章 掩星反演法數學奇異的克服 95
5.1 改寫折射率計算方程式 96
5.2 矩陣平滑法加入限制條件 97
5.3 全波譜反演法 101
5.4 矩陣平滑法和全波譜反演法比較與探討 107
第六章 掩星反演結果 113
6.1 資料處理流程 113
6.2 掩星參數反演結果 118
第七章 結論 123
參考文獻 125
參考文獻 彭國倫,Fortran 95程式設計,碁峰資訊,2001。
Ao, C.O., G.A. Hajj , T. Meehan, S.S.Leroy, E.R. Kursinski, M. de la Torre Juarez, B.A. Iijima,and A.J. Mannucci, Backpropagation Processing of GPS Radio Occultation Data, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, Springer, Series, ISBN 3-540-00206-5, 415-422, 2003.
Ahmad, B. and G. L. Tyler, Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effect of large-scale horizontal gradients, JGR, Vol. 104, No. D4, 3971-3992, 1999.
Anthes, R. A., C. Rocken, K. Y. Kuo, Applications of COSMIC to meteorology and Climate, TAO, Vol. 11, No. 1, 115-156, 2000..
Born, M., and E. Wolf, Principles of Optics, Cambridge university, New York, 1999.
Davies, K., Ionospheric radio propagation, National Bureau of Standards Monograph 80, 1965.
Escudero, A., Schlesier, A.C., Rius, A., Flores, A., Rubek, F., Larsen, G.B., Syndergaard, S., Hoeg, P., 2 Ionospheric tomography using Orsted GPS measurements—Preliminary results. Physics and Chemistry of Earth, A 26 (3), 173–176, 2001.
Feng D. D. and M. Herman, Remote Sensing the Earth’s Atmosphere Using the Global positioning System (GPS) — The GPS/MET Data Analysis, J. Atmos. Oceanic Technol., 16, 989, 1999
Gorbunov, M.E., Three-Dimensional Satellite Refractive Tomography of the Atmosphere: Numerical Simulation. Radio Sci., 31, 95-104., 1996.
Gorbunov, M., and A. S. Gurvich, Microlab-1 experiment: Multipath effects in the lower troposphere, J. Geophys. Res., 103 , 13819-13826., 1998.
Gorbunov, M., and A. S. Gurvich, Algorithms of inversion of Microlab-1 satellite data including effects of multipath propagation, Int. J. Remote Sensing, 19 , 2283-2300, 1998.
Gorbunov, M.E. and A. S. Gurvich, Comparative Analysis of Radioholographic Methods of Processing Radio Occultation Data. Radio Science, 35, 1025-1034, 2000.
Gorbunov, M. E., Ionospheric correct and statistical optimization of radio occultation data, Radio Science, Vol. 37, No. 5, 1084, 2002.
Hecht, E., Optics, Addison Wesley Longman, 1998.
Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, Global Positioning System, Springer Wien, New York, 1997.
Huang C.-Y., Y.-A. Liou, C.-C. Chiang, and Y.-J. Lin, Reconstruction of 3-D Wet Refractivity Structure of the Troposphere Using Simulated GPS Measurements. Journal of Photogrammetry and Remote Sensing (Accepted), 2005.
Huang C.-Y. and Y.-A., Liou., Ionospheric correction in the GPS radio occultation experiments. (Submitted to GRL), 2005.
Igarashi, K., A. Pavelyev, J. Wickert, K. Hocke, and D. Pavelyev, Application of radio holographic method for observation of altitude variations of the electron density in the mesosphere lower thermosphere using GPS/MET radio occultation data, Journal of Atmospheric and Solar-Terrestrial Physics, 64, 959–969, 2002.
Igarashi A. Pavelyev, K. Hocke, D. Pavelyev, I. A. Kucherjavenkov, S. Matyugov, A. Zakharov, O. Yakovlev, Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space, No. 52, 893-899, 2000.
Kursinski, E., G. Hajj, W. I. Bertiger, S. S. Leroy, T. Meehan, L. Romans, J. Scho_eld, J. Scho_eld, D. McCleese, W. Melbourne, C. Thornton, T. Yunck, J. Eyre, and R. Nagatani, Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System, Science, 271 , 1107-1110, 1996.
Kursinski E. R., G. A. Hajj, S. S. Leroy, B. Herman, The GPS Radio Occultation Technique, TAO, Vol. 11, 53-114, March 2000.
Kuo Y. H. , T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, R. A. Anthes, Inversion and Error Estimation of GPS Radio Occultations, JMSJ., Vol. 82, No.1B, pp. 507-531, 2004.
Leick, A., GPS satellite surveying, John Wiley & Sons, New York, 1995.
Leick, A., GPS satellite surveying, John Wiley & Sons, New Jersey, 2004.
Liou, Y.-A., and C.-Y. Huang, Active limb sounding of atmospheric refractivity and dry temperature profiles by GPS/Met occultation, Space Weather Study Using Multipoint Techniques, Ling-Hsiao Lyu (ed). COSPAR Colloquia Series Vol. 12 , 2002. (NSC 89-2111-M-008-025-AP3).
Liou, Y.-A., A.G. Pavelyev, C.-Y. Huang, K. Igarashi, and K. Hocke, Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method. Geophysical Research Letters, Vol. 29, No. 19, 43-1-43-4, 2002. doi:10.1029/2002GL015155.
Liou, Y.-A., A.G. Pavelyev, C.-Y. Huang, K. Igarashi, K. Hocke, and S.-K. Yan, An analytic method for observing the gravity waves using radio occultation data. Geophysical Research Letters, Vol. 30, No. 20, 2021, 2003. doi: 10.1029/2003GL017818.
Liou, Y.-A., A.G. Pavelyev, J. Wickert, C.-Y. Huang, S.-K. Yan, S.-F. Liou, Response of GPS occultation signals to atmospheric gravity waves and retrieval of gravity wave parameters. GPS Solutions, 8, 103-111. 2004. doi: 10.1007/s10291-004-0090-x
Meincke, M.D., Inversion Methods for Atmospheric Profiling with GPS Occultations. Scientific Report, Danish Meteorological Institute, Copenhagen, Denmark. 99-11, 1999.
Mortensen, M. D., and P. Hoeg, Inversion of GPS occultation measurements using Fresnel difraction theory, Geophysical Research Letters, 25 , 2441-2444, 1998.
Mostert, S., Koekemoer, J.A., The science and engineering payloads and experiments on SUNSAT. Acta Astronautica, 41 (4 –10), 401–411, 1997.
NSSDC, Space physics model, http://nssdc.gsfc.nasa.gov/space/model/
Pavelyev A.G., Y.-A. Liou, C. Reigber, J. Wickert, K. Igarashi, K. Hocke, C.Y. Huang, 2002: GPS radio holography as a tool for remote sensing of the atmosphere and mesosphere from space. GPS Solutions, 100-108, Vol. 6, No. 1-2, 2002.
Pavelyev A.G., T. Tsuda, K. Igarashi, Y.-A. Liou, and K. Hocke, Wave structures in the electron density profile in the ionospheric D and E-layers observed by radio holography analysis of the GPS/MET radio occultation data. J. Atmos. Solar-Terr. Phys., 65(1), 59-70., 2003.
Pavelyev A.G., J. Wickert, Y.A. Liou, K. Igarashi, K. Hocke, and C.Y. Huang, High-precision observation of the mesosphere and atmosphere using radioholographic analysis of GPS/MET and CHAMP radio occultation database. In: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, Ch. Reigber, and H. Luhr (ed). Pub. Springer, Berlin, pp. 500-507., 2003.
Pavelyev, A., A. I. Zakharov, A. I. Kucherjavenkov, E. P. Molotov, A. I. Sidorenko, I. L. Kucherjavenkova, and D. A. Pavelyev, Propagation of radio waves reflected from earth’s surface at gazing angles between a low-orbit space station and geostationary satellite, J. Commun. Technol. Electron., 42(1), 45-50, 2004.
Pavelyev, A. G., Y. A. Liou, J. Wickert, Diffractive vector and scalar integrals for bistatic radio holographic remote sensing, Radio Science, Vol. 39, RS4011, 2004.
Phinney, R. A. and D. L. Anderson, On the radio occultation method for studying planetary atmospheres. J. Geophys. Res., 73, 1819-1827, 1968.
Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R.Ware, M. Gorbunov, W. Schreiner D. Feng, B. Herman, Y. Kuo, and X. Zou, Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102 , 29849-29866, 1997.
Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Science, Vol. 34, No. 4, p 949-966, 1999.
Sokolovskiy, S.V., Inversions of Radio Occultation Amplitude Data. Radio Sci., 35, 97-105, 1997.
Sokolovskiy, S., Effect of superrefraction on inversions of radio occultation signals in the lower troposphere, Radio Sci., 38(3), 1058, doi:10.1029/2002RS002728, 2003.
Steiner, A. K., G. Kirchengast, and H. P. Ladreiter, Inversion, error analysis, and validation of GPS/MET occultation data, Annales Geophysicae, 17 , 122-138, 1999.
Syndergaard, S., Modeling the Impact of the Earths Oblateness on the Retrieval of Temperature and Pressure Profiles from Limb Sounding, J. Atmos. Solar-Terr. Phys., 60, 171-180, 1998.
Syndergaard, S., On the Ionosphere Calibration in GPS Radio Occultation Measurements, Radio Sci., 35, 865-883, 2000.
Syndergaard, S., A New Algorithm for Retrieving GPS Radio Occultation Total Electron Content, Geophys. Res. Lett., 29, 16, 2001GL014478, 2002.
Tyler, G.L., Radio propagation experiments in the outer solar system with Voyager, Proceedings of IEEE, 75, 1404–1431, 1997.
Vorob’ev, V. V., and T. G. Krasil’nikova, Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Phys. Atmos. Ocean, 29, 602-609, 1994.
Ware, R., M. Exner, D. Feng, M. Gobunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Soltheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, GPS Sounding of the Atmosphere for Low Earth Orbit: Preliminary Results Bull. Amer. Meteor. Soc., 77, 19-40, 1996.
Wickert, J., Reigber, C., Beyerle, G., Konig, R., Marquardt, C., Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T.K., Melbourne, W.G., Hocke, K., Atmosphere sounding by GPS radio occultation: 7rst results from CHAMP, Geophysical Research Letters, 28 (17), 3263–3266, 2001.
Wickert, J., A. G. Pavelyev, Y. A. Liou, T. Schmidt, C. Reigber, K. Igarashi, A. A. Pavelyev, and S. Matyugov, Amplitude variations in the GPS signals as a possible indicator of inonspheic structures, Geopsys. Res. Letters, Vol. 31, L24801.
Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C. Chang, J. G. Sela, and R. A. Anthes, A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle mearsurements, J. Geophys. Res., 1999.
指導教授 劉說安(Yuei-An Liou) 審核日期 2005-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明