博碩士論文 89222004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:18.220.148.123
姓名 連萱妮(Shiuan-Ni Liang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 幾何代數下的旋量與重力場正能量
(Geometric Algebra: Spinors and the Positivity of Gravitational Energy)
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 度規仿射重力理論中的準局域能量-動量
★ 廣義相對論理論中之準局域質心距★ 幾何代數與微分形式間之轉換及其在重力之應用
★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用★ Teleparallel 理論中之準局域質心距
★ 廣義相對論的準局域量的小球極限★ 重力場中準局域角動量的旋子表述
★ 有Torsion效應的宇宙★ 準區域的膺張量和陳聶式子
★ 準局部能量與參考系之選擇★ 在Kerr幾何的特殊正交座標系和狄拉克旋子
★ 球對稱時空的準局域能量★ Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有部份學者(其中有David Hestenes, DGL等)認為幾何代數 (GA, 亦稱為 Clifford代數)是一套強而有力, 可以解決所有數學和物理問題的工具. 這篇論文的目的在於測試幾何代數的極限.我們將GA應用在Nester-Witten重力場正能量的証明和QSL, 希望能藉由GA將式子簡化, 或從中得到更多新的成果.
摘要(英) Geometric Algebra (GA, also called Clifford Algebra) is a mathematical system and language introduced by two of the late 19th century’’s greatest mathematicians, Grassmann (1877) and
Clifford (1878). It was not given serious treatment and development at that time because of the introduction of another mathematical language, the vector algebra of Gibbs, which
people saw as a more generally applicable and a more straightforward algebra. Although some special cases were rediscovered over the years it was only much later in the mid-1960’’s, that an American physicist and mathematician, David
Hestenes, pioneered and promoted the general mathematical language. He claims that GA is no less than the universal language for physics and mathematics. Now, throughout the world,
there are an increasing number of research groups, especially the Cambridge research group (Doran, Gull and Lasenby (DGL)), applying
GA to many scientific problems.
In this thesis, we will first introduce the basic ideas of GA and some of its elementary applications developed by Hestenes and DGL
in chapter 2. We will illustrate the generality and portability of this powerful mathematical language when it is applied to quantum mechanics, relativity and electromagnetism. We will also
emphasize the development of GA on spinors and spacetime algebra (STA) which plays an important role in the application in the next two chapters.
Our main job is to apply the Gauge Theory Gravity (GTG, introduced by the Cambridge research group (DGL)) to two positive energy proofs: (i) the Nester-Witten Positive Energy Proof and (ii) Tung and Nester’’s Quadratic Spinor Lagrangian. It
is important to look into these proofs because from thermodynamics and stability, an essential fundamental theoretical requirement for isolated gravitating systems is that the energy of gravitating systems should be positive. Otherwise, systems could emit an unlimited amount of energy while decaying deeper into ever more
negative energy states. Meaning, gravity acts like a purely attractive force. Thus in chapter 3 we will re-express the Nester-Witten positive energy proof in terms of GA. This positive
energy proof was originally presented in tensor index form, then later re-expressed in terms of differential forms and also in Clifforms. GA is claimed to be a powerful and universal language
for physics and mathematics; our principle goal is to test it - by seeing if it works efficiently in this advanced application.
In chapter 4 we consider a second application: Tung and Nester’’s Quadratic Spinor Lagrangian (QSL). This alternative is fundamentally different from the above approach. The spinor field in this approach enters into the Lagrangian as a dynamic physical field. Again our main goal is to re-express the new Spinor Curvature Identity and the QSL in terms of GA. We hope these GA expressions not only will give simple and neat formulae but also provide new insight of the positive energy proofs.
Finally, we will draw our conclusion by comparing the relative efficiency between Clifforms and GA proof.
關鍵字(中) ★ 幾何
★ 代數
★ 重力
★ 重力場
★ 旋量
★ 正能量
★ 能量
關鍵字(英) ★ Spinor
★ Positivity
★ Positive
★ Gravitation
★ Gravity
★ Energy
★ Geometric
★ Algebra
論文目次 1. 論文封面
2. 國立中央大學碩博士論文授權書
3. 論文目錄
4. 論文摘要
5. 誌謝辭
6. 論文正文
7. 附錄
8. 參考文獻
參考文獻 1. http://modelingnts.la.asu.edu/GC_R&D.html.
2. D. Hestenes, "Space-Time Algebra", Gordon and Breach, New York (1966).
3. D. Hestenes and G. Sobczyk, "Clifford Algebra to Geometric Calculus", D. Reidel Publishing (1984).
4. D. Hestenes, "New Foundations for Classical Mechanics", Kluwe, Dordrecht (1990).
5. D. Hestenes, "Oersted Medal Lecture 2002 : Reforming the
Mathematical Language of Physics", (2002).
6. D. Hestenes, "Spacetime Physics with Geometric Algebra", (2002).
7. P. Lounesto, "Clifford Algebras and Spinors 2nd Ed.", Cambridge University Press (2001).
8. http://www.mrao.cam.ac.uk/~clifford/.
9. A. Lasenby and C. Doran, "A Lecture Course in Geometric Algebra"
10. C. Doran and A. Lasenby, "Physical Applications of Geometric Algebra".
11. A. Lasenby, C. Doran and S. Gull, "Gravity, Gauge Theories and Geometric Algebra", Phil. Trans. R. Soc. Lond. A, 356:487-582 (1999).
12. C. Doran, A. Lasenby, S. Gull, S. Somaroo and A. Challinor, "Spacetime Algebra and Electron Physics", In P. W. Hawkes, editor, "Advances in Imaging and Electron Physics", 95, page 271-386 (Academic Press) (1996).
13. A. Lasenby, C. Doran and S. Gull, "2-spinors, Twistors and Supersymmetry in the Spacetime Algebra", In Z. Oziewicz, A. Borowiec, and B. Jancewicz, editors, "Spinors, Twistors and Clifford Algebras", page 233. Kluwer (1993).
14. C. Doran, A. Lasenby and S. Gull, "States and Operators in the Spacetime Algebra", Found. Phys. 23, 1239, (1993).
15. E. Witten, Comm. Math. Phys. 80 (1981) 381.
16. J. M. Nester, "The Gravitational Hamiltonian", Springer Lect. Notes in Physics 202 (1984) 155.
17. J. M. Nester, "A New Gravitational Energy Expression with a Simple Positivity Proof", Phys. Lett. 83A, 6, (1981) 241-242.
18. C. M. Chen, J. M. Nester and R. S. Tung, "Spinor Formulations for Gravitational Energy-Momentum", arXiv: gr-qc/0209100 to appear in
the Proceeding of the 6th Conference on Clifford Algebras and
their Applications in Mathematical Physics (Cookeville, Tennessee,
20-25 May, 2002).
19. J. M. Nester and R. S. Tung, "A Quadratic Spinor Lagrangian for General Relativity", General Rel. Grav. 27 (1995) 115.
20. J. M. Nester, R. S. Tung and V. V. Zhytnikov, "Some Spinor Curvature Identities", Class. Quat. Grav. 11 (1994) 983.
21. A. Dimakis and F. Muller-Hoissen, "Clifform calculus with applications to classical field theories", Class. Quant. Grav. 8 (1991) 2093.
22. C. W. Misner, K. S. Thorne and J. A. Wheeler, "Gravitation", Freeman San Franscesco (1973).
23. J. Y. Lin, "Application of geometric algebra to gravity
theory", M. Sc. thesis, National Central University (1997).
24. Y. K. Lin, "Geometric Algebra and Differential Forms: Translation and Gravitational Application", M. Sc. thesis, National Central University (2003).
指導教授 聶斯特(James M. Nester) 審核日期 2003-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明