博碩士論文 89222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:75.101.211.110
姓名 廖育華(Yu-Hwa Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 帶電高分子吸附在帶電的表面上之研究
(Adsorption of a Charged Polymer on a Charged Surface)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究★ 顆粒體複雜流動之研究
★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 高分子鏈在交流電場或流場下的行為
★ 驟放式發火神經元的數值模擬★ DNA在微通道的熱泳行為
★ 皮膚細胞增生與腫瘤生長之模擬★ 耦合在非線性系統中的影響:模型探討以及非線性分析
★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
自然界中,帶電高分子(charged polymer)在所有的生物反應扮演了非常重要的角色。除此之外,在工業上帶電高分子也有很廣泛的應用。但是到目前為止,我們對於帶電高分子的了解還是非常的有限。長程(long-range)庫侖交互作用力是使得帶電高分子系統的理論發展困難的主要因素。在這篇論文中,我們透過一個簡單的模型,且利用蒙地卡羅(Monte Carlo)模擬的方法,研究帶電高分子在good solvent條件下的吸附(adsorption)現象。此研究和先前對於帶電高分子吸附現象的研究的最大差別在於我們考慮了重要的環境效應。此研究中的帶電高分子模型是採用非晶格模型之 -- 小珠彈簧模型(Bead-Spring Model)。研究的焦點主要是在吸附相變點附近帶電高分子吸附在帶電表面上的行為,以及比較帶電高分子和短程(short-range)交互作用力之不帶電高分子系統吸附現象的差別。從我們目前研究的結果看來,我們預言帶電高分子的吸附為一階相變。
摘要(英) Abstract
Charged polymers are widely used in industry and are present in nature. They play an important role in many problems of physical chemistry or formulation in a aqueous solvents. Typical examples would be waste water treatment or all the physical problems related to biopolymers. Surface coated with charged polymers also has important applications in industrial and biological technologies such as colloidal stabilization, adhesion, interaction of biopolymers with charged proteins, etc. another widely studied example in material is the formation of multilayers. Previous analytic studies on the adsorption of polyelectrolyte were not focused on the importance of the effect of the medium. In this study, we use a simple model to investigate the adsorption of a charged polymer on a charged impenetrable surface under good solvent conditions using Monte Carlo simulation method. The polymer chain studied in this work is modeled as beads connected by springs. The impenetrable substrate is a semi-infinite plane separating two media of different dielectric properties. We study the behavior near the adsorption phase transition. Our recent results predict that the adsorption of a charged polymer appears to be first-order.
關鍵字(中) ★ 吸附
★ 帶電高分子
關鍵字(英) ★ adsorption
★ charged polymer
論文目次 Contents
Contents …………………………………………………………………………… I
Figure captions …………………………………………………………………… III
1 Introduction …………………………………………………………………….. 1
1.1 The Historical Development of Polymers …………………………… 2
1.2 Introduction to Neutral Polymers ……………………………………... 4
1.3 Review of polymer adsorption with short-range attraction ………. 11
1.4 Introduction to Charged Polymers ……………………………………. 12
2 Theory of Charged Polymers …………………………………………….….. 15
2.1 Properties of Charged Polymers in Solution ………………………... 15
2.2 Charged Polymer in a semi-infinite region bounded by a flat substrate …………………………………………… 22
3 The Simulation Method ………………………………………………………. 33
3.1 Bead-Spring Model ……………………………………………………… 34
3.2 Monte Carlo Simulation Method ……………………………………… 37
3.2.1 Metropolis Monte Carlo Method ………………………………… 38
3.2.2 Histogram Monte Carlo Method ………………………………… 44
3.3 Simulation Details ……………………………………………………….. 46
4 Simulation Results and Discussions …………………………………….…. 51
4.1 Results for the Static by the Standard Monte Carlo Simulation method ……………………………………………………... 51
4.2 Results of the Histogram Monte Carlo Simulations ……………….. 60
5 Conclusion and Outlook ……………………………………………………... 77
Reference …………………………………………………………………………. 79
參考文獻 References:
[1] R.Golestanian, Phys. Rev. Lett. 83, 2473 (1999).
[2] E. Gurovitch and P. Sens, Phys. Rev. Lett. 82, 339 (1999).
[3] G. Decher, J.D. Hong, J. Schmitt, Thin Solid Films 210/211, 831 (1992).
[4] F. Caruso, K. Niikura, D.N. Furlong, Y. Okahata, Langmuir 13, 3422 (1997).
[5] P. Bertrand, A. Jonas, A. Laschewsky, and R. Legras, Macromol. Rapid Commun. 21, 319 (2000).
[6] F. W. Wiegel, J. Phys. A 10, 299 (1977).
[7] E. Gurovitch and P. Sens, Phys. Rev. Lett. 82, 339 (1999).
[8] J. F. Joanny, Eur. Phys. J. B 9, 117 (1999).
[9] Andrey V. Dobrynin, Alexander Deshkovski, and Michael Rubinstein, Phys. Rev. Lett. 84, 3101 (2000).
[10] Alexander Yu. Grosberg and Alexei R. Khokhlov, Giant Molecules, (Academic Press,1997).
[11] Alexander Yu. Grosberg and Alexei R. Khokhlov, Statistical Physics of Macro-molecules, (AIP Press, 1994).
[12] M. Doi and S. F. Eduards, The Theory of Polymer Dynamics, (CLARENDON PRESS, OXFORD 1986).
[13] Fumio Oosawa, Polyelectrolytes, (DEKKEV, 1971).
[14] M. Doi, Introduction to Polymer Physics, (CLARENDON PRESS, OXFORD, 1996).
[15] P. J. Flory, Principles of chemistry, (Cornell University, Ithaca, 1953).
[16] Pik-Yin Lai, Phys. Rev. E 49, 5420 (1994).
[17] E. Eisenriegler, Polymers Near Surfaces, (World Scientific, Singapore, 1993).
[18] E. Eisenriegler, K. Kremer, and K. Binder, J. Chem. Phys. 77, 6296 (1982).
[19] H. Meirovitch and S. Livne, J. Chem. Phys. 88, 4507 (1988).
[20] WilliamM. Gelbrat, Robijn F. Bruinsma, Philip A. Pincus, and V. Adrian Parsegian, Phys Today, 38 ( September 2000).
[21] David Boal, Mechanics of the Cell, (CAMBRIDGE UNIVERSITY PRESS, 2002).
[21] A. R. Khokhlov, K. A. Khachaturian, Polymer 1982, 23, 1742.
[22] R. R. Netz, H. Orland, Eur. Phys. J. B 1999, 8, 81.
[23] De Gennes P.G., Pincus P., Velasco R., Brochard F.J. Phys.(Paris) 37, 1461, (1976).
[24] M. H. Nayfeh, M. K. Brussel, Electricity and Magnetism, (John Wiley 1985).
[25] J. D. Jackson, Classical Electrodynamics, (JOHN WILEY AND SONS 1975).
[26] J. M. Hammersley and D. C. Handscornb, Monte Carlo method, (1964).
[27] H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Applications to Physical Systems, (Addison-Wesley 1996).
[28] David P. Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical Physics, (CAMBRIDGE 2000).
[29] Yu-Jane Sheng, Pik-Yin Lai, and Heng-Kwong Tsao, Phys. Rev. E 61, 2895 (2000).
[30] J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2002-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明