博碩士論文 89222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.81.73.233
姓名 李明倫(Min-Lum Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
(Material Characterizations and DeviceApplications of Si-implanted p-GaN )
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析
★ 微凹平面鏡及矽光學桌之組裝設計★ 指叉型氮化鎵發光二極體之設計製作與量測
★ 氮化鎵光偵測器的暗電流與激子效應★ 氮化鋁保護層應用於離子佈植活化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本實驗是在p型氮化鎵中佈植矽離子,經由氮氣環境下的快速熱退火處理而形成矽離子佈植試片。X-Ray布拉格繞射結果顯示,即使經由1150oC, 60秒快速熱退火處理,仍然無法將結構完全修復。藉由改變離子佈植及熱退火的條件可以將試片的電性由p型(~3´1017cm-3)轉變為n型(2´1017cm-3~2´1019cm-3)。本實驗發現矽原子在典型的矽離子佈植試片中,其活化能(~10 meV以下)比磊晶成長的矽摻雜試片(~15 meV以下)低,且多了一個深層能階(~60 meV)的施體。在光激發光譜的分析中,觀察到一個372nm峰值,它可能是由離子佈植所造成的結構破壞而引發的;另外,還觀察到一個525nm峰值,它可能源自跟磊晶成長式的矽摻雜n型氮化鎵所具有之黃光峰值一樣。
矽離子佈植式p-n二極體的特性分析中,在小的順向操作偏壓(Vj<2V)時,除了單純的複合電流與擴散電流之外,還存在一些由缺陷所造成的額外傳導電流,而這些缺陷的來源有可能是成長時的空缺或錯位,以及離子佈植所造成的結構破壞。在電激發光譜的分析中,觀察到一個430nm峰值,它可能是來自於和鎂有關的受體和未知施體之間的躍遷。另一方面,矽離子佈植式p-n二極體應用在逆向偏壓的操作範圍時,可以當作一個紫外光光檢測器。當外加的逆向壓在1V時,暗電流是50 nA/cm2,而當外加的逆向壓在3V時,暗電流是1.5 A/cm2。這個光檢測器的截止波長大約是365 nm(光響應強度約為 0.33 mA/W),且對紫外光(~365 nm)和可見光(~500 nm)的鑑別度可達260倍。
摘要(英) Abstract
Si ion implantation into p-type GaN followed by rapid thermal annealing (RTA) in N2 has been performed. X-ray diffraction analyses indicated that ion-implanted damage remains even with 1150oC, 60sec RTA. By varying implantation and post-implantation annealing conditions, we could convert carrier concentration from p-type 3´1017cm-3 into n-type 2´1017cm-3~2´1019cm-3. It was found that typical activation energies of Si implants in p-GaN are lower than 10 meV Such activation energies are smaller than those observed from epitaxially grown Si-doped GaN films (~15meV). A deep donor level with activation energy of 60meV was also found from some samples. Photoluminescence (PL) studies show that the peak appears at 372nm might be related to implantation-induced defects. A green emission band was observed from Si-implanted GaN. This green emission may be related to the yellow band observed for the epitaxially grown Si-doped GaN.
Characterizations of GaN n+-p junction diodes formed by Si implantation into p-GaN were also performed by using various techniques including current-voltage(I-V) measurements and electroluminescence(EL) spectroscopy. The current-voltage characteristics at low forward bias region (Vj<2 V) are measured. It might be interpreted as the results are governed by a trap-assisted generation-recombination mechanism rather than a simple recombination current. In addition to the grow-in defects including vacancies(VGa VN) and dislocation, ion implantation would further induce more defects or unrecoverable structural damage in the implanted layers, which these are the source of possible trap-assisted generation-recombination centers, and affect significantly the characteristics of optical and electrical properties. For EL measurements, a blue band emission around 430 nm was observed, which can be attributed to a Mg-related donor-to-acceptor transition. On the other hand, for the application in visible blind UV detector, the Si-implanted planar GaN p-n diodes are also a potential candidate. The current density measured under dark condition is around 1.5 mA/cm2 and 50 nA/cm2 at a reverse bias of 3 V and 1V, respectively. Spectra response measurements revealed a cut-off wavelength of about 365 nm and a peak responsivity of around 0.33 mA/W at 365 nm. In addition, the photodiodes showed a typical visible rejection ratio, which divides the values of the responsivity at 365 nm and at 500 nm, of around 260.
關鍵字(中) ★ 矽離子佈植 關鍵字(英) ★ Si-implanted
論文目次 Table of Contents
Abstract………………………………………………………...I
Table of contents……………………………………………...V
Figure Captions……………………………………………VIII
Chapter 1. Introduction …………………………………1
Chapter 2. Experimental techniques and Related Analysis Systems ……………………………3
2-1 Ion-implantation method
2-1.1 Theory of ion implantation
2-1.2 Ion implantation method
2-2 Secondary ion mass spectrometry (SIMS)
2-3 X-Ray diffraction (XRD)
2-3.1 Theory of XRD
2-3.2 XRD measurement system
2-4 Hall measurements
2-4.1 Theory of Hall effect
2-4.2 Hall measurement system
2-5 Photoluminescence (PL)
2-5.1 Theory of PL
2-5.2 PL measurement system
2-6 Responsivity and time response
Chapter 3. Experiments (Sample preparation)………..15
3-1 Preparation of Si-implanted layers for characterization
3-1.1 Mg-doped GaN grown by MOVPE
3-1.2 Procedure of Si ion-implantation into p-GaN bulk layers
3-1.3 Thermal annealing process
3-1.4 Ohmic contact formation
3-2 Fabrication of GaN n+ - p diode formed by Si ion implantion
3-2.1 n+-p junctions formed by Si ion implantation into p-GaN and RTA process
3-2.2 Process of n+-p diodes
Chapter 4. Results and Discussions …………………19
4-1 Characters of Si ion implantation into GaN:Mg
4-1.1 X-ray diffraction analyses of Si-implanted GaN
4-1.2 Hall measurements of Si-implanted GaN
4-1.3 Photoluminescence of Si-implanted GaN
4-2 Characterization of n+-p diodes formed by Si-implanted GaN
4-2.1 Current-voltage characteristics of n+ - p diode
4-2.2 Eletroluminescence of n+ - p diode
4-2.3 Application to UV photodetector
Chapter 5. Conclusions……………………………..…42
References………………………….………………………44
Figures……………………………………………………. 48
參考文獻 References
1. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976).
2. J. H. Edgar, “Properties of Group III Nitrides”, p273(INSPEC, London, United Kingdom, 1994)
3. S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett. 67, 1435 (1995).
4. J. C. Zolper, H. H. Tan, J. S. Williams, . Zou, D. J. H. Cockayne, S. J. Pearton, M. Hagerott Crawford and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2729 (1997).
5. H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton and R. A. Stall, Appl. Phys. Lett. 69, 2364(1996).
6. C. J. Eting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D. Becher, H. Kou, G. E. Stillman and M. Feng, Appl. Phys. Lett. 73, 3875(1998).
7. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V. Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J. Drummond and R. J. Shul, Appl. Phys. Lett. 73, 229(1998).
8. W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S. Chan and C. Y. Chang, Jpn. J. Appl. Phys, 38, L802(1999)
9. J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, J. Appl. Phys. Vol.91,1845 (2002)
10. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, 460(2001).
11. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, 848(2001).
12. W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, 559(2001).
13. Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, pp. 2996-2999 (2001)
14. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, Jpn. J. Appl. Phys., Vol. 40, pp. 2762-2764, (2001).
15. S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, Appl. Phys. Lett., Volume 78, pp. 312-313 (2001).
16. K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, J. Crystal Growth, Vol. 220, pp. 405-412, (2000).
17. W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, Jpn. J. Appl. Phys. Lett., Vol. 39, pp. L1138-L1140 (2000).
18. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung, Appl. Phys. Lett. Vol.74, 2340-2342(1999).
19. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, W. C. Hung, J. S. Bow and Y. C. Yu, J. Vac. Sci & Tech, B.18, 729(2000).
20. T. D. Moustakas, T. Lei, and R. J.Molnar, Physica B185, 36(1993)
21. C. Liu, B. Mensching, M. Zeitler, K. Volz and B. Rauschenbach, Physical Rev. B57, 25302535(1998)
22. S. M. Sze, “ Semiconductor device physics and technology”,(John Wiley, 1985)
23. N. F. Mott,” Metal-Insulator Transitions”(Taylor&Francis, Landon,1990)
24. I. H. Lee, I.H.Choi, C.R.Lee, and S.J.Son, et al., J. Cryst. Growth., 182, 314(1997)
25. L. B. Rowland, K.Doverspike and D.K.Gaskill, Appl. Phys. Lett., 66, 1495(1995)
26. T. Tanaka, A. Watanabe, H. Amano, H. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, Appl. Phys. Lett., 65, 2024(1994)
27. J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).
28. P. Debye and E. M. Conwell, Phys. Rev. 93,693(1954)
29. N. F. Mott and W. D. Twose, Adv. Phys., 10, 107(1961).
30. U. Kaufmann, M. Kunzer, M. Maier, H.Obloh, A. Ramakrishnan, B. Santic and P. Schlotter, Appl. Phys. Lett. Vol.72, 1326(1998).
31. F. Shahedipour and W. Wessels, Appl. Phys. Lett. Vol.76, 3011(2000).
32. J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).
33. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett., Vol.69, 503(1996)
34. X. Zhang, P. Kung, D. Walker, A. Saxler and M. Razeghi, Mater. Res. Soc. Symp. Proc, Vol.395, 625(1996)
35. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. Vol.47, 5387(1976).
36. T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J.Jun, M. Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett. Vol.67, 2188(1995).
37. D. M. Hoffman, et al., Phys. Rev. B 52, 16 702 (1995); A. Hoffman,et al., Solid-State Electron. Vol. 41, 275(1997).
38. R. A. Abram, G. J. Rees and B. L. H. Wilson, Adv. Phys., Vol.27, 799(1978)
39. K. Boer, “Survey of Semiconductor Physics”, van Nostrand Reinhold, New York, 1990.
40. H. Yao, and A. Compaan, Appl. Phys. Lett., Vol.57, 147(1990)
41. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung, Appl. Phys. Lett. 74, 2340 (1999).
42. R. J. Molnar, T. Lei and T. D. Moustakas, Appl. Phys. Lett., 62,72(1993).
43. A. Y. Polyakov, M. Shin, M. Skowronski, R. G. Wilson, D.W. Greve, S. J. Pearton, Solid-State Electron., Vol.41, 703(1997).
44. J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, Appl. Phys. Lett., Vol.72, 2841(1998).
45. M. M. Anikin, V. V. Evstropov, I. V. Popov, V. N. Rastegaev, A. M. Strel’chuk, and A. L. Syrkin, Sov. Phys. Semicond. 23, 405 (1989)
46. J. S. Escher, H. M. Berg, G. L. Lewis, C. D. Moyer, T. U. Robertson, and H. A. Wey, IEEE Trans. Electron. Dev. ED-29, 1463(1982)
47. S. Nakamura, T. Mukai and M. Senoh, Jpn. J. Appl. Phys., Vol. 30, L1998(1991).
48. H. Amano, M. Kito, K. Hiramatsu and I. Aakasaki, Jpn. J. Appl. Phys., Vol. 28, L2112(1989).
49. J. I. Pankove, Optical Processes in Semiconductors ( Prentice-Hall, New JERSEY, 1971 ), PP. 147-152.
50. H. C.Casey,Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett., 68, 2867(1996).
51. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Vol.34, L797 (1995).
52. S. Nakamura, T. Mokia and M. Senoh, Appl. Phys. Lett. Vol.64, 1689 (1994).
53. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, Appl. Phys. Lett. Vol.70, 868 (1996).
54. M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, Appl. Phys. Lett. Vol.66, 1083 (1995).
55. O. Aktas, Z. F. Fan, S. N. Mmohammad, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. Vol.69, 3872 (1996).
56. M. A. Khan, A. R. Bhattarai, J. N. Kkuznia, and D. T. Olson, Appl. Phys. Lett. Vol.63, 1214(1993).
57. J. Pankove, S. S. Chang, H. C. Lee, R. J. Molnar, T. D. Moustakas, and B. Van Zeghbroeck, IEDM, Vol.94, 389(1994).
58. G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars,U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. Vol.75, 247(1999).
59. J. Z. Li, J. Y. Lin, H. X. Jiang, and M. A. Khan, Vol.72, 2868(1999).
60. Mohammad A. Saleh, Majeed M. Hayat, Oh-Hyun Kwon, Archie L. Holmes, Jr., Joe C. Campbell, Bahaa E. A. Saleh and Malvin C. Teich, Appl. Phys. Lett. Vol.79, 4037(2001).
61. M. A. Khan, J. N. Kkuznia, D. T. Olson, and M. Blasingame, Appl. Phys. Lett. Vol.63, 2455(1993).
62. M. Razeghi and A. Rogalski, J. Appl. Phys., Vol.79, 7433(1996) and references therein.
63. D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, Appl. Phys.Lett., Vol.72, 3303(1996), and references therein.
64. Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, Appl. Phys.Lett., Vol.70, 2277(1997)
65. A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys.Lett., Vol.72, 551(1998)
66. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys.Lett., Vol.73, 975(1998)
67. J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, D. Lambert, J. D. Schaub, R. D. Dupuis and J. C. Compbell, Electron. Lett. Vol. 34, 692(1998)
68. W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. Mcpherson and H. Marsh, Appl. Phys. Lett. Vol.73, 1086(1998).
69. David Wood, Optoelectronic Semiconductor Devices(Prentice Hall, London,1994)
70. X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler and M. Razeghi, Appl. Phys. Lett., Vol. 67, 2028(1995).
71. S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch. 10, Fig 19
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2002-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明