博碩士論文 89222025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.221.145.174
姓名 曹福君(Fu-chun Tsao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氧化鋅奈米線成長機制與材料特性之研究
(Growth Mechanism and Characterizations of ZnO Nanowires)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主題為利用化學氣相層積法,在不同條件下成長氧化鋅奈米線,並且研究成長條件對於氧化鋅奈米線的成長機制、形貌、結構及光性的影響。成長條件大致分為三個部分:
一﹑在不同基板上成長氧化鋅奈米線的部分,選用不同晶格常數的基板,例如:矽基板、藍寶石基板、氮化鎵基板。因為不同基板對應於氧化鋅會造成不同程度的晶格不匹配,使得氧化鋅奈米線在成長機制、形貌、結構特性及光學性質上有所影響,從實驗結果可知,在晶格不匹配程度較大的基板上(矽基板, 藍寶石基板),氧化鋅奈米線的成長機制為Volmer-Weber mode (VW mode),氧化鋅會在基板上先形成六角形島狀結構,在島狀氧化鋅的頂端形成奈米線,奈米線整體的形貌較為混亂且成長不具有特定的方向性。在結構方面具有一些缺陷的情形發生,造成光學性質上有較明顯的綠光放射。在不匹配程度較小的基板上(氮化鎵基板),氧化鋅奈米線的成長機制為Frankvan der Merwe mode (FdM mode),氧化鋅會先在基板表面形成一層薄膜,厚度約為一微米,再從薄膜上的稜角處成長出奈米線,奈米線的形貌相似且具有垂直基板表面成長的方向性。在結構上的缺陷情形不明顯,使得光學性質上只有氧化鋅能階邊緣的紫外光放射的情形。
二﹑成長過程中利用金作為成長反應的催化劑,使得氧化鋅的生成量也有明顯的增加,在有催化劑的情形下,氧化鋅的成長機制為固-液-氣成長機制,氧化鋅的生成量約為未使用催化劑的1000倍,但是氧化鋅的形貌非常的混亂且造成結構中有非常多的缺陷產生,使得因為缺陷造成的綠光放射的強度大於氧化鋅能階的紫外光放射。
三﹑不同成長時間在氮化鎵基板上可以生成不同線徑大小的氧化鋅奈米線,所有的氧化鋅奈米線皆垂直於基板表面成長,但是奈米線的長度並未明顯的增加,使得奈米線的表面與體積的比例(表面積/體積)從2.5下降到0.3,從X-ray繞射實驗中,可以觀察到當奈米線線徑越小,在奈米線成長方向上的伸展的張力越大,使得晶格常數也越大。在光學性質上,我們只觀察到氧化鋅能階邊緣的紫外光放射,這說明樣品的結構很好,但是紫外光放射的位置隨線徑變小,有一個藍移的現象發生,我們認為藍移現象是因為奈米線表面積與體積比例下降而造成的藍移現象。
摘要(英) In this thesis, the growth mechanism, morphology, structure, and optical properties of the
ZnO nanowires grown by chemical vapor deposition (CVD) under different growth conditions
were investigated with different growth condition. For ZnO nanowires grown on Si (100) and
sapphire, the growth mode is Volmer-Weber mode (VW-mode) due to the large lattice misfit
(>30%) between ZnO and substrate. We observed the island-like nanostructures at the bottom
of the ZnO nanowires with random direction. The ZnO nanowires grown on GaN template
were vertically well-aligned with 1-μm-thick wetting layer. Thus, the growth mode is
attributed to the Frankvan der Merwe mode (FdM mode). The ZnO nanowires grown on the
GaN template have preferred growth orientation along the c-axis. Photoluminescence (PL)
spectrum exhibits only the near-band-edge (NBE) emission without defect-related deep-level
emission at room temperature (RT). Characteristics of ZnO nanowires grown with and
without employing Au as catalyst are studied. The density of the ZnO nanowires grown with
catalyst is 1000 times than that of ZnO nanowires without catalyst. The ZnO nanowires grown
with and without Au catalyst can be attributed to the vapor-liquid-solid (VLS) method and
vapor-solid processes, respectively. PL spectrum of ZnO nanowires grown with Au catalyst
exhibits a strong defect-related deep-level emission. It demonstrated that the ZnO nanowires
grown with Au catalyst causes lots of defects in the ZnO nanowires. Size-dependent ZnO
nanowires are studied. The diameter is from 37 to 250 nm. From X-ray diffraction results,there exists a tensile strain, along the c-axis, increases with decreasing the diameter of ZnO
nanowires. From RT-PL spectrum, the peak of NBE emission shifts to higher energy with
decreasing in the diameter of ZnO nanowires. The energy shift could be due to the
surface-to-volume ratio effect with different diameter of ZnO nanowires
關鍵字(中) ★ 奈米線
★ 氧化鋅
關鍵字(英) ★ nanowires
★ ZnO
★ CVD
論文目次 中文摘要…………………………………………………………I
Abstract (in English)……………………………………………...III
致謝………………………………………………………………V
Contents…………………………………………………………..VII
Table captions………………………………………………….....X
Figure captions……………………………………………………XI
CHAPTER 1 INTRODUCTION
1-1 Nanostructures and Nanotechnology………………….1
1-2 Material Background…………………………………..2
Reference…………………………………………………3
CHAPTER 2 GROWTH MECHANISM
2-1 Growth processes and material characterizations..……6
2-2 Synthesis methods of nanomaterials…………………..7
2-2-1 Vapor-Liquid-Solid growth mechanism……………..7
2-2-2 Vapor-Solid growth mechanism……………………..8
2-2-3 Growth modes of heterostructure epitaxial………….9
Reference……………………………………………11
CHAPTER 3 MORPHOLOGY AND STRUCTURE OF
ZnO NANOWIRES
3-1 Introduction…………………………………………...16
3-2 Experiments…………………………………………...16
3-3 Results and Discussions……………………………....17
3-3-1 Different Substrates………………………………...17
3-3-2 Catalyst……………………………………………..19
3-3-3 Growth time………………………………………...23
Reference…………………………………………...26
CHAPTER 4 OPTICAL PROPERTY OF ZnO
NANOWIRES
4-1 Introduction…………………………………………...52
4-2 Experiments…………………………………………...52
4-3 Results and Discussions……………………………....53
4-3-1 Different Substrates………………………………...53
4-3-2 Catalyst……………………………………………..56
4-3-3 Growth time………………………………………...57
Reference…………………………………………...59
CHAPTER 5 CONCLUSIONS
Conclusions……………………………………………………80
Publication List………………………………………………..84
參考文獻 Ch.1
[1] V. T. Binh, P. Vincent, and F. Feschet, J. Appl. Phys. 88 3385 (2000)
[2] Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84 1525
(2004)
[3] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, and W. Huang, Appl. Phys.
Lett. 88 213102-1 (2006)
[4] L. Li, Y. Yang, X. Fang, M. Kong, G. Li, and L. Zhang, Solid State Comm. 141
492 (2007)
[5] W. Ensinger, and P. Vater, Mater. Sci. Eng. C 25 609 (2005)
[6] Q. Hu, G. Li, H. Suzuki, H. Araki, N. Ishikawa, W. Yang, and T. Noda, J. Crystal
Growth 246 64 (2002)
[7] S. B. Qadri, M. A. Imam, C. R. Feng, B. B. Rath, M. Yousuf, and S. K. Singh,
Appl. Phys. Lett. 83 548 (2003)
[8] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu, and J. Zhu, Appl. Phys. Lett. 75
507 (1999)
[9] Y. Liu, Y. Dong, and G. Wang, Appl. Phys. Lett. 82 260 (2003)
[10] Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, and N. Koshizaki, Chem. Phys. Lett. 368 663 (2003)
[11] Y. Li, Y. Bando, and T. Sato, Chem. Phys. Lett. 359 141 (2002)
[12] X. Y. Kong, and Z. L. Wang, Solid State Comm. 128 1 (2003)
[13] Y. F. Zhang, Z. Tang, T. Z. Han, X. C. Ma, J. F. Jia, Q. K. Xue, K. Xun, and S. C.
Wu, Appl. Phys. Lett. 90 093120 (2007)
[14] Y. M. Wan, H. T. Lin, C. L. Sung, and S. F. Hu, Appl. Phys. Lett. 87 123506
(2005)
[15] G. F. Wang, T. J. Wang, and X. Q. Feng, Appl. Phys. Lett. 89 231923 (2006)
[16] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J.
Crystal Growth 234 171 (2001)
[17] B. P. Zhang, N. T. Binh, and Y. Segawa, Plli. Phys. Lett. 83 1635 (2003)
[18] Y. Sun, M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396 21 (2004)
[19] L. Vayssieres, Advan. Mater. 15 464 (2003)
[20] B. Liu, Y. Bando, C. C. Tang, F. F. Xu, and D. Golberg, Appl. Phys. Lett. 87
073106 (2005)
[21] J. C. Harmand, G. Patriarche, N. Péré-Laperne, M-N. Mérat-Combes, L. Travers,
and F. Glas, Appl. Phys. Lett. 87 203101 (2005)
[22] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J.
Pearton, Appl. Phys. Lett. 87 093112 (2005)
[23] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, H. Hiraga, Z. Zhu, and T. Yao, J.
Appl. Phys. 84 3912 (1998)
[24] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y.
Segawa, Solid State Commun. 103 459 (1997)
[25] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto,
Appl. Phys. Lett. 73 2230 (1997)
[26] R. Konenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85 6004 (2006)
[27] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Appl. Phys. Lett. 83 996 (2003)
Ch.2
[1] H. J. Yuan, S. S. Xie, D. F. Liu, X. Q. Yan, Z. P. Zhou, L. J. Ci, J. X. Wang, Y.
Gao, L. Song, L. F. Liu, W. Y. Zhou, and G. Wang, Chem. Phys. Lett. 371 337
(2003)
[2] K. Yamamoto, K. Nagasawa, and T. Ohmori, Physica E 24 129 (2004)
[3] Z. Zhu, T. L. Chen, J. Warren, and R. M. Osgood, Chem. Mater. 17 4227 (2005)
[4] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, and R. Wang, J. Phys. Chem. B 107
8289 (2003)
[5] A. Sekar, S. H. Kim, A. Umar, and Y. B. Hahn, J. Crystal Growth 277 471 (2005)
[6] R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4 89 (1946)
[7] G. W. Sears, Acta Met. 4 361 (1955)
[8] A. L. Barabási, Mater. Scie. Eng. B 67 23 (1999)
[9] D. J. Eaglesham, and M. Cerullo, Phys. Rev. Lett. 64 1943 (1990)
Ch.3
[1] A. L. Barabási, Mater. Scie. Eng. B 67 23 (1999)
[2] J. H. Brophy, R. M. Rose, J. Wulff, Thermodynamics of structure, John
Wiley&Sons, INC. NewYork, 1967
[3] H. J. Yuan, S. S. Xie, D. F. Liu, X. Q. Yan, Z. P. Zhou, L. J. Ci, J. X. Wang, Y.
Gao, L. Song, L. F. Liu, W. Y. Zhou, and G. Wang, Chem. Phys. Lett. 371 337
(2003)
[4] K. Yamamoto, K. Nagasawa, and T. Ohmori, Physica E 24 129 (2004)
[5] Z. Zhu, T. L. Chen, J. Warren, and R. M. Osgood, Chem. Mater. 17 4227 (2005)
[6] R. B. M. Cross, M. M. D. Souza, and E. M. S. Narayanan, Nanotech. 16 2188
(2005)
[7] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, and R. Wang, J. Phys. Chem. B 107
8289 (2003)
[8] A. Sekar, S. H. Kim, A. Umar, and Y. B. Hahn, J. Crystal Growth 277 471 (2005)
[9] A. M. S. ElAhl, M. He, P. Zhou, G. L. Harris, L. S. Riba, F. Felt, H. C. Shaw, A. S.
Sharma, M. Jah, D. Lakins, T. Steiner, and S. N. Mohammad, J. Appl. Phys. 94
7749 (2003)
[10] R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4 89 (1946)
[11] H. W. Seo, S. Y. Bae, J. Park, H. Yang, K. S. Park and S. Kim, J. Chem. Phys.
116, 9492 (2002).
[12] C. H. Lee, G. C. Chi, C. F. Lin, M. S. Feng and L. D. Guo, Appl. Phys. Lett. 68,
3440 (1996).
Ch.4
[1] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl.
Phys. 84 3912 (1998)
[2] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y.
Segawa, Solid State Commun. 103 459 (1997)
[3] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto, Appl. Phys. Lett.
73 1038 (1998)
[4] L. H. Quang, C. S. Jin, E. A. Fitzgerald, Adv. Mater. (Weinheim, Ger) 23 465
(2006)
[5] R. Konenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett. 85 6004 (2006)
[6] Y. Du, S. Han, W. Jin, C. Zhou, A. F. J. Levi, Appl. Phys. Lett. 83 996 (2003)
[7] D. G. Thomas, J. J. Hopfield, W. M. Augustyniak, Phys. Rev. 140 A202 (1965)
[8] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakrishnan, B.
Santic, Phys. Rev. B 59 5561 (1999)
[9] M. A. Reshchikov, R. Y. Korotkov, Phys. Rev. B 64 115205 (2001)
[10] Y. P. Varshni, Physica (Amsterdam) 34 149 (1967)
[11] M. Stoehr, S. Juillaguet, T. M. Kyaw, J. G. Wen, Phys. Stat. Sol. (c) 4 1432
(2007)
[12] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J.
Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A. V. Rodina,
Phys. Stat. Sol. (b) 241 231 (2004)
[13] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Appl.
Phys. Lett. 81 1231 (2002)
[14] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voiget, B. E.
Gnade, J. Appl. Phys. 79 7982 (1996)
[15] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, D. Liu, J. Cryst. Growth 236 269
(2004)
[16] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79 943 (2001)
[17] B. lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79 943 (2001)
[18] C. W. Chen, K-H. Chen, C-H. Chen, A. Ganguly, L-C. Chen, J-J. Wu, H-I. Wen,
W-F. Pong, Appl. Phys. Lett. 88 241905 (2006)
[19] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, K. S. Chung, Appl.
Phys. Lett. 81 2193 (2003)
[20] Y. M. Niquet, G. Allan, C. Delerue, M. Lannoo, Appl. Phys. Lett. 77 1182 (2000)
[21] H. W. Seo, S. Y. Bae, J. Park, H. Yang, K. S. Park, S. Kim, J. Chem. Phys. 116 9492
(2002)
[22] R. Ghosh, D. Basak, and S. Fujihara, J. Appl. Phys. 96 2689 (2004)
指導教授 紀國鐘(Gou-chung Chi) 審核日期 2007-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明