博碩士論文 89222026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.232.99.123
姓名 黃雅詩(Ya-shih Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微凹平面鏡及矽光學桌之組裝設計
(Design of Concave Micro-mirrors and Optical Element Packaging)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 指叉型氮化鎵發光二極體之設計製作與量測
★ 氮化鎵光偵測器的暗電流與激子效應★ 氮化鋁保護層應用於離子佈植活化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文設計了兩種微平面鏡。第一種微平面鏡稱為離軸微平面鏡,主要是根據光線描線法的概念用來設計出等效的微透鏡光學元件。此微平面鏡可利用電子束微影機及電漿蝕刻技術來製作。我們也從製程上難易程度的觀點來比較繞射光學元件及離軸平面鏡若要達到相同的光學條件所需的最大長寬比,我們得到的結論是:當所需的數值孔徑小於 0.6 時, 製作離軸微平面鏡會比製作 SiO2 材料的繞射光學元件容易;當所需的數值孔徑小於 0.2 時, 製作離軸微平面鏡會比製作GaN 材料的繞射光學元件容易。
第二種設計為一微平面鏡加上光柵。此平面鏡的設計主要是根據羅倫圓定律。此微平面鏡的設計可利用電子束微影機及電漿蝕刻技術來製作,而光柵則可利用濕蝕刻技術來達成。
我們也提出了一種被動式的對準方法將微光學元件組裝到一個矽光學桌上。我們利用電漿蝕刻技術以及濕蝕刻技術來達成此設計的製作。這個設計不但可以讓各種微光學元件都整合在矽光學桌上,並且可以精準的控制每個方向上的對準。
摘要(英) In this dissertation, two kinds of concave micro-mirrors are designed. The off-axis micro-mirror is designed based on ray tracing for the fabrication on silicon substrate using e-beam writer and inductively coupled plasma. The aspect ratios of the surface relief of the diffractive micro-lenses and the micro-mirrors are compared to reduce the fabrication difficulty for the identical optical function. The results show that compared with the micro-lenses in SiO2 and GaN, the micro-mirrors are preferred to be fabricated than micro-lenses if their numerical apertures are lower than 0.6 and 0.2, respectively. Free space echelle grating is designed for Dense Wavelength Division Multiplexing (DWDM) system. It is based on the law of Rowland. It is a hybrid of a concave micro-mirror and blazed gratings. The design of the concave micro-mirror can be carried out on silicon substrate using e-beam writer and plasma etching .The blazed grating can be achieved by fine V-groove etching.
We also demonstrate a novel method to mount micro-opto-electronic devices on a Si bench. Inductively Coupled Plasma ( ICP ) and KOH etching and are performed for carrying out this novel method. The Si-based component after through wafer etching was picked by the optical fibers and placed on the optical bench. This can not only make X, Y, Z, θ and the tilt directions precisely controlled but also be suitable for all components mounting on the optical bench.
關鍵字(中) ★ 微凹平面鏡
★ 微光電系統
★ 矽光學桌
關鍵字(英) ★ micro-mirror
★ MEMS
★ packaging
論文目次 Abstract (in Chinese) i
Abstract (in English) iii
Contents v
Figure Captions viii
Table Captions xiii
Chapter1. Introduction
1.1 The background of Micro-mirror 1
1.2 Overview of this Dissertation 6
Chapter 2. Theoretical Calculation and Simulation
2.1 The Design of Off-Axis Micro-mirror
2.1.1 Theoretical Calculation 7
2.1.2 Design of Off-axis Micro-mirror 9
2.1.3 Formula for Measurement of Focal Length
of the Micro-mirror 12
2.1.4 Maximum Aspect Ratio of the Surface Relief of Diffractive Micro-lenses 13
2.1.5 Simulation 16
2.1.6 Results of the Off-axis Micro-mirror 18
2.2 The Design of Free Space Echelle Grating
2.2.1 Introduction 20
2.2.2 The Design of the Free Space Echelle Grating 20
2.2.3 Results of the Free Space Echelle Grating 25
Chapter 3. Packaging of Optical Elements on Si Optical Bench
3.1 Introduction 26
3.2 Concepts of the Package 26
3.3 The Mask Design for the Packaging of Optical
Components 28
3.4 Through Wafer Etching
3.4.1 Inductive Coupled Plasma Etching 29
3.4.2 KOH Etching 32
3.5 Process 33
3.6 Results of KOH Etching 35
3.7 Results of the Package 36
Chapter 4. Future Work
4.1 Fabrication of Free Space Echelle Grating 38
4.2 Design of the Light Path for Free Space Echelle Grating 39
Figures 40
Tables 66
Reference 67
參考文獻 [1]S. T. Miller,Bell Syst. Tech. J. 45,2059 ( 1969 )
[2]H.C. Nathanson, W.E. Newell, R. A. Wickstrom, J. R. Davis, Jr., “The Resonant Gate Transistor,” IEEE Transaction on Electron Devices, Vol. ED-14, No. 3, March 1967, pp. 117-133.
[3]L. Y. Lin, S. S. Lee, K.S. J. Pister, and M.C. Wu, optical Fiber Communication Conference, San Jose, CA, 20-25 February 1994, postdeadline paper PD12
[4] O. Solgaard, , M .Daneman, N.C. Tien, A. Friedberger, R.S. Muller, K.Y.Lau,, “Optoelectronic packaging using silicon surface-micromachined alignment mirrors IEEE Photonics Technology Letters , Vol. 7 Issue: (1) , Jan. 1995 .
[5]M. C. Wu, L. Y. Lin and S.S. Lee, Proc. SPIE 2291, 40 ( 1994 )
[6]L. Y. Lin, S.S. Lee, K.S. J. Pister, and M.C. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system “, IEEE Photonics Technol. Lett. PTL-6, 1445 ( 1994 )
[7]C. H. Henry, G.E. Blonder, and R.F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging”, J. Lightwave Technol. 7, 1530 ( 1989)
[8]L.Y.Lin, S. S. Lee, K.S. J. Pister, and M.C. Wu, “ Self-aligned hybrid integration of semiconductor lasers with micromachined micro-optics for optoelectronic packaging”, Appl. Phys. Lett. 66 ( 22 ), 29 May (1995)
[9]Bernhard E. Boser and Roger T. Howe, “Surface Micromachined Accelerometers”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 3, March 1996, pp. 366-75.
[10]L.Y. Lin, S.S. Lee, K.S.J. Pister and M.C. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system”, IEEE Photonics Technology Letters, vol. 6, NO. 12, Dec. 1994.
[11] Xiaomei Wang, James R. Leger and Robert H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation”, Diffractive optics and micro-optics”, Summaries of the papers presented at the topical meeting, Boston, Massachusetts, April 29-May 2, 1996.
[12]Chii-Chang Chen, Jenq-Yang Chang, Gou-Chung Chi, “Design of GaN convex diffractive microlenses”, to appear in Optics and Laser Technology.
[13]Chii-Chang Chen, Ming-Hung Li, Jinn-Kong Sheu, Gou-Chung Chi, Wei-Tai Cheng, Jui-Hung Yeh, Jenq-Yang Chang, Toshiaki Ito, “GaN diffractive microlenses fabricated with gray-level mask,” unpublished data.
[14] Francis A. Jenkins and Harvey E. White, “Fundamental of Optics”, McGraw-Hill International editions, 4th edition, Singapore, 1981, pp. 75-99.
[15] Wu, M.C., “Michromaching for Optical and Optoelectronic system”, Proceedings of the IEEE, vol.85 no.11, 1977, p.p. 1833-1856.
[16] Hideaki Okayama and Taiji Tsuruoka, “Wavelength demultiplexer using a multi-reflection-mirror waveguide”,Optical Engineering – Vol. 41, Issue 6, June 2002, pp. 1446-1451
[17] Minoru Araki, Hideki Koyama, and Nobuyoshi Koshida,” Fabrication and fundamental properties of an edge-emitting device with step-index porous silicon waveguide”, Applied Physics Letters Vol. 68, Issue 21, May 20, 1996, pp. 2999-3000
[18] Fallahi, M.; McGreer, K.A.; Delage, A.; Normandin, R.; Templeton, I.M.; Barber, R.; Chatenoud, F.; Champion, G. ,” Demonstration of grating demultiplexer in GaAs/AlGaAs suitable for integration”, Electronics Letters , Vol. 28, Issue 24 , 19 Nov. 1992, Page(s): 2217 -2218
[19] Erickson, L.; Lamontagne, B.; He, J.J.; Delage, A.; Davies, M.; Koteles, E., “Using a retro-reflecting echelle grating to improve WDM demux efficiency” , Vertical-Cavity Lasers, Technologies for a Global Information Infrastructure, WDM Components Technology, Advanced Semiconductor Lasers and Applications, Gallium Nitride Materials, Processing, and Devices, 1997 Digest of the IEEE/LEOS Summer Topical Meetin , 1997, Page(s): 82 –83
[20] Jian-Jun He; Lamontagne, B.; Delage, A.; Erickson, L.; Davies, M.; Koteles, E.S., “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/lnP”, Lightwave Technology, Journal of , Vol. 16, Issue 4 , April 1998
Page(s): 631 –638
[21] Ulrich Hofmann, Sascha Muehlmann, Martin Witt, Klaus Dörschel, Rijk Schütz, Bernd Wagner, “Electrostatically Driven Micromirrors for a miniaturized confocal laser scanning microscope”, SPIE Conference on Miniaturized Systems with Micro-Optics and MEMS, Proceedings of SPIE, Vol. 3878 ( 1999)
[22] Manabu Noda, Toshio Matsumoto, Shuji Matsuura, Kunio Noguchi, Masahiro Tanaka, Mark Lim, Hiroshi Murakami, “Near-Infrared Spectrometer on the Infrared Telescope in Space”, Astrophysical Journal Letters, 428:132-F5 (1995)
[23] S. S. Lee, Li Fan and M.C. Wu, “ MEMS Actuateors and Micropositioners for the Integrated Micro-Optics”, SPIE Vol. 3289 p155, ( 1998 )
[24]V. V. Protopopov, “ Focusing X-Ray by Flexible Mirrors Under Arbitrary Loading”, Optics Communications 199 1-15, 15 November 2001
[25]V. Schwegler, S. S. Schad, M. Scherer, M. Kamp, G. Ulu, M. Emsley, M. S. Ünlü, A. Lell, S. Bader, B. Hahn, H. J.Lugauer, F. Kühn, A. Weimar, V. Härle, “GaN- based Lasers on SiC: Influence of Mirror Reflectivity on L-I Characteristics”, Journal of Crystal Growth 230 ( 2001 ) 512-516
[26]Robert A. Conant, Paul M. Hagelin, Uma Krishnamoorthy, Mattew Hart, Olav Solgaard, Kam Y. Lau, Richard S. Muller, “ A Raster-Scanning Full-Motion Video Display Using Polysilicon Micromachined Mirrors”, Sensors and Actuators 83 ( 2000 ) 291-296
[27]J. B. Sampsell, "An Overview of Texas Instruments Digital Micromirror Device (DMD) and Its Application to Projection Displays," Society for Information Display Internatl. Symposium Digest of Tech. Paper, 24, 1012 (1993).
[28]Mark J. Mescher, Michael L. Reed, and T. E. Schlesinger, “ Variable Focal Length Microelectromechanical Lens “, SPIE Vol. 3289, p171-176
[29] R. E. Kunz and M. Rossi, “Phase-matched Fresnel Elements”, Optics Communications 97 p.6-10 (1993)
[30] Kai Engelhardt,“Acquisition of 3-D data by focus sensing utilizing the moire effect of CCD cameras”, Applied Optics-IP, Vol. 30, Issue 11, Page 1401.
[31] M. de Angelis, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, T. Hessler, “ An interferometric method for measuring short focal length refractive lenses and diffractive lenses”, Optics Communications 160, 1 February1999.
[32] L. d’Auria, J. P. Huignard, A. M. Roy, and E. Spitz, Opt. Commun. 5, 232 (1972).
[33] M.C. Hutley, “ Diffration gratings”, National Physical Laboratory, 1982
[34] S.S. Lee, L.Y. Lin and M.C. Wu, “Surface-micromachined fraa-spacemicro-optical systems containing three-dimensional micro-gratings”, Appl. Phys. Lett. 67(15), 9 October 1995
[35] Ian R. Johnston, Huma Ashraf, Jy K. Bhardwaj, Janet Hopkins, Alan M. Hynes, Glenn Nicholls, Serrita A. McAuley, Stephen Hall, Lilian Atabo, Gregory R. Bogart, Avi Kornblit, Anthony E. Novembre, “ Etching 200 mm Diameter SCALPEL? Masks with the ASE? Process” by Surface Technology Systems and Bell Laboratories, Lucent Technologies
[36] J. Bhardwaj, H. Ashraf, J. Hopkins, I. Johnston, S. McAuley, S. Hall, G. Nicholls, L. Atabo, A. Hynes, C. Welch, A. Barker, B. Gunn, L. Lea, E. Guibarra, S. Watcham, “ Advaced in High Rate Silicon and Oxide Etching using ICP “, STS Ltd.
指導教授 紀國鐘(Guo-chung Chi) 審核日期 2002-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明