博碩士論文 89222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.238.190.122
姓名 孟繁蕃(Feng-Feng Meng)  查詢紙本館藏   畢業系所 物理學系
論文名稱 廣義相對論理論中之準局域質心距
(Quasilocal center-of-mass moment in general relativity)
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 度規仿射重力理論中的準局域能量-動量
★ 幾何代數與微分形式間之轉換及其在重力之應用★ 幾何代數下的旋量與重力場正能量
★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用★ Teleparallel 理論中之準局域質心距
★ 廣義相對論的準局域量的小球極限★ 重力場中準局域角動量的旋子表述
★ 有Torsion效應的宇宙★ 準區域的膺張量和陳聶式子
★ 準局部能量與參考系之選擇★ 在Kerr幾何的特殊正交座標系和狄拉克旋子
★ 球對稱時空的準局域能量★ Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 既然重力場中不存在能量與動量之密度,則應致力於
尋求各守恆量之準局域量.本文繼同一系列研究之後,探
討在廣義相對論理論中之質心距之準局域量,由此非但可
以再次驗証Nester-Chen expression之有效性,更能顯示
質心距較其他守恆量對各種表示式理論提供更嚴格之檢驗
標準
摘要(英) Having recognized the absence of energy and momentum density for the gravitational field, conserved quasilocal quantities over finite 3- dimensional regions are the best that can be expected. Nester-Chen expression for the quasilocal center-of-mass moment was investigated.
Not only the result agrees with the expectated asymptotical limit value but also the center-of-mass moment behaves as a more strict criteria for the validity of the expression.
關鍵字(中) ★ 廣義相對論
★ 重力場
★ 準局域量
★ 質心距
關鍵字(英) ★ general relativity
★ quasilocal quantity
★ center-of-mass moment
論文目次 Chapter 1. Introduction ......................................1
§1. Outline .................................................1
§2. Mathematical notations ...................................2
§3. Absence of energy and momentum density ..................2
§4. Center-of-mass moment ...................................4
Chapter 2. General Lagrangian formulation ....................7
§1. δL .....................................................7
§2. H= ZμHμ+ dB ...........................................9
§3. Hμ is proportional to variational derivatives ..........10
§4. The role of B ..........................................11
§5. δH ...................................................12
Chapter 3. Lagrangian formulation in GR .....................16
§1. Various theories in relativity .........................16
§2. L EC in GR ..............................................18
§3. δL EC ..................................................20
§4. H and B ................................................22
§5. δH and C ..............................................23
§6. H vs. δH and B vs. C ..................................26
§7. ∫Σ H= -NP+ (1/2)λJ ..................................28
§8. Covariant Differentials ................................30
Chapter 4. Application in the Linearized theory of gravity ..34
§1. Introduction ...........................................34
§2. Basic quantities in weak- field limit ..................34
§3. Orders of magnitude ....................................40
§4. Quasilocal Quantities in Weak Fields ...................41
Chapter 5. Evaluation of the COM moment .....................44
§1. First- order expansion of quantities; Connections ......44
i. Metrics ...............................................44
ii. Metric Densities ......................................45
iii. △η, etc. ............................................46
iv. Connections ...........................................46
v. Expansion of N and DN .................................48
§2. Various B forms ........................................48
i. The Komar- type expressions ...........................49
ii. The Freud- type expressions ...........................50
§3. Evaluation of the conserved quantities .................51
i. P0 ....................................................52
ii. Pj’s and Jjk’s ........................................58
iii. J0j’s: the COM moments ................................58
Chapter 6. Conclusion and Discussion ........................65
References ..................................................68
參考文獻 [ADM] R.Arnowitt, S.Deser and C.W.Misner, Phys. Rev. 122 (1961), 997
[BO] R.Beig and N.O’Murchadha, Ann. Phys. 174 (1987) 463-98
[BY] J.D.Brown and J.W.York, Jr., Phys. Rev. D 47 (1993) 1407-19
[CNC99] C.C.Chang, J.M.Nester and C.M.Chen, Phys. Rev. Lett. 83 (1999) 1897-901
[CNC00] C.C.Chang, J.M.Nester and C.M.Chen, Gravitation and Astrophysics, (World Scientific, 2000) pp163-173
[Che] C.M.Chen, Quasilocal quantities for gravity theories (MSc thesis, 1994, NCU, unpublished)
[Cha] C.C.Chang, The localization of gravitational energy – pseudotensors and quasilocal expressions (MSc thesis, 1998, NCU, unpublished)
[CN99] C.M.Chen and J.M.Nester, Class.Quantum Grav. 16 (1999) 1279
[CN00] C.M.Chen and J.M.Nester, Gravitation & Cosmology 6 (2000) 257
[Dou] N.A.Doughty, Lagrangian interaction (Singapore, Addison-Wesley, 1990)
[Fr] P.Freud, Ann. Math. 40 (1938) 417
[Ha] K.Hayashi and T.Shirafuji, Prog. Phys. 64 (1980), 866, 883, 1435, & 2222
[He76] F.W.Hehl, P.von der Heyde, G.D.Kerlik and J.M.Nester, Rev. Mod. Phys. 48 (1976) 393
[He95] F.W.Hehl, J.D.McCrea, E.W.Mielke and Y.Ne’eman, Phys. Rep. 258 (1995) 1
[KBL] J.Katz, J.Bicak and D. Lynden-Bell, Phys. Rev. D 55 (1997) 5957
[Ko] A.Komar, Phys. Rev. 113 (1959) 934
[Mo] C.MØller, Ann. Phys. (N.Y.) 12 (1961), 118
[MTW] C.W.Misner, K.Thorne, and J.A.Wheeler, Gravitation (San Francisco, Freeman, 1973)
[Vu] K.H.Vu, Quasilocal energy- momentum and energy momentum for Teleparallel gravity (MSc thesis, 2000, NCU, unpublished)
指導教授 聶斯特(JM Nester) 審核日期 2002-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明