博碩士論文 89224007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:198 、訪客IP:54.242.25.198
姓名 楊明華(Ming-Hua Yang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 利用cDNA微陣列技術探討蕃茄根部組織受過量銅誘導之基因
(Functional Genomics Study in the Roots of Tomato (Lycopersicon escolentum) in Response to Excess of Copper Using cDNA Microarray Technique)
相關論文
★ 利用相減式雜交法鑑定小葉浮萍受巴拉刈與銅誘導之基因★ 利用乳酸菌表達大腸桿菌之酸性磷酸
★ 應用人類基因表現資料於基因表現關聯性之研究★ 阿拉伯芥根細胞核之有絲分裂原蛋白質激酶與蛋白質酪胺酸磷酸化受銅處理之變化
★ 小葉浮萍之色胺酸合成酵素beta鏈基因選殖與色胺酸及其衍生物受銅影響之化學分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要
對植物而言,銅是一必需的微量元素。在植物細胞內,銅可作為許多參與氧化反應、光合作用酵素的輔助因子。然而,過量銅存在會引起毒性反應如氧化性之壓迫,導致植物矮小以及死亡。另一方面,在缺乏銅的環境下,葉子會有彎曲變形以及提早老化的病徵。根是植物吸收土壤中金屬微量元素的重要組織器官,因此根部細胞可說是擔任控制銅離子恆定作用的第一道前線。然而目前根部細胞內銅離子恆定機制及生理功能並不清楚,所以本論文是採用功能性基因組之研究探討蕃茄根部組織在過量銅環境下誘導的特定基因,由這些基因已知的生理作用及相關途徑,來說明其在植物根部組織中銅離子恆定作用的機制。而我主要的實驗是利用差異式基因選殖與cDNA微陣列技術來大量收集受過量銅誘導的基因,且獲得其核苷酸序列並利用基因資料庫作序列的比對推斷其可能的身分。目前已從10 mM CuSO4處理四天之蕃茄根部細胞的相減式cDNA基因庫中,挑出48個受銅誘導兩倍以上的基因,而以基因的生理作用可分類為:(一)與抗氧化逆境相關之基因;(二)與抗病源體感染相關之基因;(三)與賀爾蒙的合成相關之基因;(四)與細胞的修復相關之基因;(五)其它基因群。
摘要(英) Abstract
Copper is an essential trace element in plants. It is a cofactor for many cellular enzymes involving oxidation and photosynthesis. Excess amount of copper causes oxidative stress in cells and may lead stunted growth or death. On the other hand, the deficiency of copper causes several symptoms such as distortion and premature senescence of young leaves. Plants acquire trace elements such as copper through root system. Thus, root tissue stays in the front line and plays a key role in regulating copper homeostasis. However, the physiological mechanism of controlling copper concentration in root is still unclear. This thesis adopts functional genomic approach to unfold specific gene expression in various physiological processes under the treatment of excess copper to tomato root tissue. The up-regulated genes may help to illustrate the partial scheme of copper homeostasis in root system. The differential cloning method is employed to select copper-induced clones. Subsequently, the copper responsive genes were collected by cDNA microarray. The identities may be revealed by DNA sequencing and by the alignment of the gene sequences in Gene Bank. Forty-eight up-regulated clones of over two folds were identified from the cDNA subtraction library that was generated from the continuous treatment of 10 μM copper sulfate for 4 days in tomato roots. Based on their physiological implication, they can be grouped into five categories: (1) anti-oxidation (2) pathogen response (3) hormone biosynthesis (4) cellular organization (5) others.
關鍵字(中) ★ 蕃茄
★ 重金屬
★ 銅離子恆定機制
★ 相減式cDNA雜交法
★ cDNA微陣列
★ 功能性基因組
關鍵字(英) ★ cDNA microarray
★ subtraction cDNA hybridization
★ copper homeostasis
★ heavy metal
★ tomato
★ functional genomics
論文目次 目錄
中文摘要--------------------------------------------------------- Ⅰ
英文摘要--------------------------------------------------------- Ⅱ
目錄--------------------------------------------------------------- Ⅲ
『圖』目錄------------------------------------------------------ Ⅵ
『表』目錄------------------------------------------------------ Ⅶ
縮寫表--------------------------------------------- --------------- Ⅷ
第一章 緒 論
壹、 在植物中金屬的恆定機制------------------------ 1
貳、 銅的特性及其功能--------------------------------- 3
參、 過量銅離子濃度對植物的影響------------------ 4
肆、 文獻已知受過量銅誘導的基因------------------ 5
伍、 相減式雜交法--------------------------------------- 5
陸、 cDNA微陣列(cDNA microarray)的簡介--- 6
柒、 研究動機--------------------------------------------- 7
捌、 研究目的--------------------------------------------- 8
第二章 材料與方法
第一節 實驗材料
壹、 種子的來源------------------------------------------ 10
貳、 蕃茄的種植------------------------------------------ 10
第二節 實驗方法
壹、 不同銅離子濃度及處理時間點的毒性測驗--- 11
貳、 銅在植物體內的累積量之測定------------------- 11
參、 北方點墨法------------------------------------------- 12
肆、 訊息核糖核酸(mRNA)之純化與分析-------- 14
伍、 相減式cDNA雜交法------------------------------- 16
陸、 建立相減式cDNA基因庫------------------------- 21
柒、 cDNA微陣列----------------------------------------- 23
捌、 基因定序與分析------------------------------------- 27
第三章 實驗結果
第一節 過量銅濃度對蕃茄生長的影響
壹、過量銅濃度對蕃茄之外觀型態的影響----------- 29
貳、 過量銅濃度對蕃茄根部細胞內標的基因的影響
參、 銅在shoot與root的累積量----------------------- 29
第二節 建立相減式cDNA基因庫
壹、 訊息核糖核酸(mRNA)之純化與分析------- 30
貳、 相減式cDNA雜交法所得到可能受過量銅誘導
的基因------------------------------------------------- 31
第三節 cDNA微陣分析誘導基因之表現
壹、 相減式cDNA基因庫之誘導基因確立---------- 32
貳、 探討在蕃茄根部細胞內受過量銅誘導的基因
表現情形---------------------------------------------- 32
參、 DNA定序及基因鑑定------------------------------ 33
第四章 討論
第一節 受過量銅誘導基因之探討------------------------- 34
第二節 受過量銅誘導基因與其它逆境的關係---------- 40
第五章 結論與建議
壹、 結論---------------------------------------------------- 42
貳、 建議 ---------------------------------------------------- 43
參考文獻---------------------------------------------------------- 45
附錄 --------------------------------------------------------------- 82
圖目錄
圖一、在植物中金屬恆定機制的假設系統圖------------------------ 52
圖二、目前已知的植物金屬運輸蛋白(transpoters)-------------- 53
圖三、製備相減式cDNA雜交法實驗流程--------------------------- 54
圖四-1、蕃茄幼苗經毒性測驗4天後之外觀型態變化------------- 55
圖四-2、蕃茄幼苗經毒性測驗4天後之外觀型態變化(近照)-- 56
圖五、北方點墨法分析蕃茄根部LEMT1基因------------------------- 57
圖六、蕃茄根部的總核糖核酸(total RNA)純化與分析---------- 58
圖七、蕃茄根部的訊息核糖核酸(mRNA)純化與分析---------- 59
圖八、確定過量銅之相減式cDNA雜交結果------------------------ 60
圖九、受過量銅誘導蕃茄根部細胞的基因片段之確定------------ 61
圖十、cDNA微陣列圖像------------------------------------------------ 62
圖十一、受過量銅誘導的基因表現倍率之分散曲線圖------------ 63
圖十二、受過量銅誘導的基因表達倍數之數目統計--------------- 64
圖十三、與抗病原體有關的訊息傳遞途徑--------------------------- 65
表目錄
表一、Hoagland水耕培養液------------------------------------------- 66
表二、毒性測驗培養的條件----------------------------------------- -- 67
表三、本研究所選用引子(primer)之序列----------------------- 68
表四、銅在植物體內的累積分布情形------------------------------- 69
表五-1、與抗氧化逆境相關之基因---------------------------------- 70
表五-2、與抗病源體感染相關之基因------------------------------- 71
表五-3、與抗病源體感染相關之基因------------------------------- 72
表五-4、與抗病源體感染相關之基因------------------------------- 73
表五-5、與賀爾蒙的合成相關之基因------------------------------- 74
表五-6、與細胞的修復相關之基因---------------------------------- 75
表五-7、其它基因群---------------------------------------------------- 76
表五-8、其它基因群---------------------------------------------------- 77
表五-9、其它基因群---------------------------------------------------- 78
表五-10、其它基因群-------------------------------------------------- 79
表五-11、其它基因群-------------------------------------------------- 80
表六、受過量銅誘導基因對其他逆境之多重反應---------------- 81
參考文獻 參考文獻
Akopian AN and Wood JN (2000). Construction and screening of a subtractive cDNA library. In Functional genomics, SP Hunt and R Livesey, eds. Oxford, New York, pp. 9-31.
Bordo D, Djinovic K, and Bolognesi M (1994) Protein, Structure conserved patterns in the Cu, Zn superoxide dismutase family. J. Mol. Biol. 238: 366-386.
Buchanan BB, Gruissem W, and Jones RL (2000) Biosynthesis of hormone and elicitor molecules. In Biochemistry and molecular biology of plants, BB Buchanan, W Gruissem, and RL Jones, eds. American Society of Plant Physiologists, Maryland, pp. 851-864.
Buchman C, Skroch P, Welch J, Fogel S, and Karin M (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA binding protein. Mol. Cell Biol. 9: 4091-4095.
Chongpraditnun P, Mori S, and Chino M (1992) Excess copper induces a cytosolic Cu,Zn-supperoxide dismutase in soybean root. Plant Cell Physiol. 33: 239-244.
Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-486.
Cobbett CS (2000a) Phytochlatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3: 211-216.
Cobbett CS (2000b) Phytochlatins and their roles in heavy-metal detoxification. Plant Physiol. 123: 825-832.
Coupe SA, Taylor JE, and Roberts JA (1995) Characterization of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. leaflets. Planta 197: 422-427.
Culotta VC, Howard WR, and Liu XF (1994) CRS5 encodes a metallothionein-like in Saccharomyces cerevisiae. J. Biol. Chem. 269: 25295-25320.
Dancis A, Haile D, Yuan DS, and Klausner RD (1994a) The Saccharomyces cerevisiae copper transport protein (Ctrp1). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J.Biol.Chem. 269: 25660-25667.
Dancis A, Yuan DS, Haile D, Eide D, Moehle C, Kaplan J, and Klausner RD (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76: 393-402.
Demidchik V, Sokolik A, and Yurin V (1997) The effect of Cu2+ on ion transport systems of plant cell plasmalemma. Plant Physiol. 114: 1313-1325.
Dhondt S, Geoffroy P, Stelmach BA, Legrand M, and Heitz T (2000) Soluble phospholipase A2 activity is induced before oxylipin accmulation in tobacco mosaic virus-infected tobacoo leaves and is contributed by patain-like enzymes. Plant J. 23: 431-440.
Doke N, Miura Y, Sanchez LM, Park H-J, Noritake T, Yoshioka H, and Kawakita K (1996) The oxidative burst protects plants against pathogen attack: meachanism and role as an emergency signal for plant bio-defence- a review. Gene 179: 45-51.
Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, and Tobinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol. Biol. 20: 1019-1028.
Feldmann KA (2001) Cytochrome P450s as genes for crop improvement. Curr. Opin. Plant Biol. 4: 162-167.
Fesussner K, Feussner I, Leopold I, and Wasternack C (1997) Isolation of a cDNA coding for an ubiqutin-conjugation enzyme UBC1 of tomato--the first stress-induced UBC of higher plants. FEBS Lett. 409: 211-215.
Furst P, Hu S, Hackett R, and Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific KNA binding protein. Cell 55: 705-717.
Garcia-Hernandez M, Murphy A, and Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol. 118: 387-397.
Gillissen B, Burand L, Andre B, Kuhn C, Rentsch D, Brandl B, and Frommer WB (2000) A new family of high-affinity transpoters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12: 291-300.
Giritch A, Ganal M, Stephan UW, and Baumlein H (1998) Structure, expression and chromosomal localization of the metallothionein-like gene gamily of tomato. Plant Mol. Bio.l 37: 701-714.
Gralla EB, Thiele DJ, Silar P, and Valentine JS (1991) ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc. Natl. Acad. Sci. 88: 8558-8562.
Gross C, Kelleher M, Iyer VR, Brown PO, and Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisisae by DNA microarrays. J. Biol. Chem. 275: 32310-32316.
Hamza I, Schaefer M, Klomp LW, and Gitlin JD (1999) Interaction of the copper chaperone HAH1 with the Wilxon disease protein is essential for copper homeostasis. Proc. Natl. Acad. Sci. 96: 13363-13368.
Hanawa F, Tahara S, and Mizutani J (1991) Isoflavonoids prouduced by Iris pseudacorus leaves treated with cupric chloride. Phytochemistry 30: 157-163.
Henriques FS and Fernandes JC (1991) Biochemical, physiological, and structutal effects of excess copper in plants. Botanical Review 57: 246-273.
Henriques FS and Lipon FC (1994) Subcellular localisation of copper and partial isolation of copper protein in root from rice plant expoesed to excess copper. Aust. J. Plant Physiol. 21: 427-36.
Himelblau E and Amasino RM (2000) Delivering copper within plant cells. Curr. Opin. Plant Biol. 3: 205-210.
Himelblau E, Mira H, Lin SJ, Culotta VC, Peñarrubia L, and Amasino RM (1998) Identifiction of a functional homolog of the yeast copper homeostasis gene ATX1 form Arabidopsis. Plant Physiol. 117: 1227-1234.
Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, and Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a MENKes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-393.
Jamison McDaniels CP, Jensen LT Srinivasan C, Winge DR, and Tullius TD (1999) The yeast transcription factor Mac1 binds to DNA in a modular fashion. J. Biol. Chem. 274: 26962-26967.
Jungmann J, Reins HA, Lee J, Romeo A, Hassett R, Kosman D, and Jentsch S (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors in involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12: 5051-5056.
Kampfenkel K, Kushnir S, Babiychuk E, Inze D, and van Montagu M (1995) Molecular characterization of a putative Arabidopsis thaliana coppertranspoter and its yeast homologue. J. Biol. Chem. 270: 28479-28486.
Kelly A and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chm. 277: 1166-1173.
Labbe S, Zhu Z, and Thiele DJ (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272: 15951-15958.
Luna CM, González CA, and Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15.
Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR, and Simons JR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisize. J. Biol. Chem. 273: 23716-23721.
Mathews K and van Holde KE (1995) Metabolism of nitrogenous compounds: amino acids, porphyrins, and neurotransmitters. In Biochemistry, K Mathews and KE van Holde, eds. Benjamin-Cummings, pp. 746-747.
Matsumoto S, Narita H, Ikura K, and Sasaki R (1996) Nucleotide squence of cationic peroxidase abundantly secreted by culture tobacco cells. Plant Physiol. 110: 713.
Mazhoudi S, Chaoui A, Ghorbal MH, and Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (lycopersicon esculentum, Mill.) Plant Sci. 127: 129-137.
Mira H, Martínez N, and Peñarrubia L (2002) Expression of a vegetative-storage-protein gene from Arabidopisi is regulated by copper, senescence and ozone. Planta 214: 939-946.
Murphy A and Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol. 109: 945-954.
Murphy AS, Eisinger WR, Shaff JE, Kochian LV, and Taiz L (1999) Early copper-induced leakage of K(+) form Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol. 121: 1375-1382.
Newman SM, Eannetta NT, Yu H, Prince JP, de Vicente C, Tanksley SD, and Steffens JC (1993) Organisation of tomato polyphenol oxidase gene family. Plant Mol. Biol. 21: 1035-1051.
Ortiz DF, Ruscitte T, McCue KF, and Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 270: 4721-4728.
Ouzounidou, G (1994) Copper induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environ. Exp. Bot. 34: 165-172.
Perl-Treves R and Galun E (1991) The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17: 745-760.
Quinn JM and Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7: 623-628.
Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol. 109: 1141-1149.
Robinson NJ, Wilson JR, and Turner JS (1996) Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn (2+)- metallothionein -deficient Synechococcus PCC 7942: putative role for MT2 in Zn 2+ metabolism. Plant Mol. Biol. 30: 1169-1179.
Rosenzweig AC and O’Halloran TV (2000) Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 4: 140-147.
Schützendübel A and Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.
Shank KJ, Su P, Brglez I, Boss WF, Dewey RE, and Boston RS (2001) Idetification of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants. Plant Physiol. 126: 267-277.
van der Zaal EJ, Droog FNJ, Boot CJM, Hensgens LAM, Hoge JHC, Schilperoort RA, and Libbenga KR (1991) Promoter of auxin-induced genes from tobacco can lead to auxin-induced and root tip- specific expression. Plant Mol. Biol. 16: 983-998.
Wainwright SJ and Woolhouse HW (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenius Sibth.: cell elongation and membrane damage. J. Exp. Bot. 28: 1029-1036.
Weckx JE and Clijsters HM (1996) Oxidative damage and defense mechanism in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of coppe. Physiol. Plant. 96: 506-512.
Woeste KE and Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12: 443-455.
Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman Dj Klausner RD, and Dancis A (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272: 17711-17718.
Yuan DS, Dancis A, and Klausner RD (1997) Restriction of copper export in Saccharomyces Cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J. Biol. Chem. 272: 25787-25793.
Zaphiropoulos PG, Skantz A, Eliasson M, and Ahlberg MB (1995) Cytochrome P450 genes expressed in porcine ovaries: identification of novel forms, evidence for gene coversion, and evolutionary relationships. Biochem. Biophys. Res. Commun. 212: 433-441.
Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179: 21-30.
指導教授 董啟功(Chii-Gong Tong) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明