博碩士論文 89224011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.22.61.246
姓名 謝佳容(Chia-Jung Hsieh)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
(Elucidating the biological functions of the appended domain of yeast ValRS )
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在酵母菌的系統中,相對應於每種胺基酸分別有兩套解碼自細胞
核基因的tRNA 合成酵素。其中一套用於細胞質中的蛋白質合成作
用,另一套則是在粒線體中執行反應。然而,在之前的研究中顯示
VAS1 是酵母菌染色體中唯一能解碼valine tRNA 合成酵素的基因。此
基因利用選擇性轉錄及轉譯作用同時合成細胞質及粒線體的valine
tRNA 合成酵素。這兩個同功酵素具有幾乎完全相同的胺基酸序列,
但是在粒線體valine tRNA 合成酵素的胺基端多了一組由46 個胺基酸
組成的”粒線體標的訊號”,由於這兩個tRNA 合成酵素存在於不同的
胞器內,使得它們在功能上並不能相互的取代。有趣的是,相較於原
核生物的valine tRNA 合成酵素,酵母菌的細胞質valine tRNA 合成
酵素在其胺基端多了一段由98 個胺基酸組成的附加區段。序列分析
的結果顯示這個區段含有許多帶正電荷的胺基酸,不同於大部分合成
酵素的附加區段,純化的valine tRNA 合成酵素的附加區段並不會鍵
結tRNA ,在功能上也是可有可無,將大部分的附加區段由合成酵素
中刪除並不影響它的活體內及活體外功能。值得注意的是,我們發現
這個附加區段本身具有活化轉錄的功能,或許valine tRNA 合成酵素
本身就是一個轉錄活化因子。
摘要(英) In yeast, there typically are two distinct nuclear-encoded tRNA
synthetases for each amino acid; one functions in the cytoplasm and the
other in the mitochondria. However, evidence shows that VAS1 is the only
gene coding for valyl-tRNA synthetase (ValRS) in the complete yeast
genome. This gene encodes not only the cytoplasmic form of ValRS but
also its mitochondrial isoform. These two ValRS enzymes have
essentially identical polypeptide sequences, except for a 46-amino acid
leader peptide at the N-terminus of the mitochondrial precursor, which
functions as a mitochondrial targeting signal. Biochemical studies show
that these two ValRS isoforms cannot distinguish tRNA species from the
cytoplasm and mitochondria in vitro. Despite these similarities, these two
ValRS species cannot substitute for each other in vivo, presumably due to
differential partitioning. We show here that the appended domain of yeast
ValRS, which is absent in its prokaryotic counterparts, is largely
dispensable for the enzyme’s aminoacylation as well as complementing
activities. Moreover, unlike the appended domains of other yeast tRNA
synthetases, the appended domain of yeast ValRS does not appear to bind
tRNA. Interestingly, this dispensable domain exhibits a strong
transcriptional activation activity in a two-hybrid test, suggesting that
ValRS might be involved in regulation of gene expression.
關鍵字(中) ★ tRNA合成酶
★ 胺醯化作用
關鍵字(英) ★ valine
★ valine tRNA synthetase
★ Aminoacylation
論文目次 目 錄
目錄-----------------------------------------------------------------------I
『表』目錄----------------------------------------------------------------------IV
『圖』目錄-----------------------------------------------------------------------V
縮字表--------------------------------------------------------------------------VII
第一章 緒論--------------------------------------------------------------------1
壹、簡介tRNA 合成酵素--------------------------------------------1
一、tRNA 合成酵素的生化功能
二、tRNA 合成酵素的分類
三、高等真核生物中tRNA 合成酵素的特性
貳、酵母菌中tRNA 合成酵素的分佈-----------------------------3
一、 蛋白質在哪裡合成?
二、要如何由一個基因得到兩個蛋白質產物?
參、簡介Valyl-tRNA synthetase-----------------------------------5
一、 ValRS 的生化特性
二、酵母菌中的ValRS
第二章 材料與方法----------------------------------------------------------7
壹、實驗材料-----------------------------------------------------------7
一、大腸桿菌株
二、 酵母菌株
三、 載體
四、核酸引子
貳、實驗方法-----------------------------------------------------------8
一、 核酸的製備
二、 大腸桿菌勝任細胞的製備與轉型作用
三、 酵母菌ValRS 附加區段基因的增幅與選殖
四、 酵母菌勝任細胞的製備與轉型作用
五、 大腸桿菌融合蛋白質的表現與純化
六、 酵母菌融合蛋白質的表現與純化
七、 西方墨點法
八、 酵母菌互補作用試驗
九、 胺醯化作用分析
十、聚丙烯醯胺親和力共電泳
第三章 結果------------------------------------------------------------------24
壹、酵母菌ValRS 的附加區段具有轉錄活化作用------------24
貳、酵母菌ValRS 的附加區段對於ValRS 缺失株的互補能
力並不重要-----------------------------------------------------25
參、酵母菌ValRS 的附加區段並不參與ValRS 的胺醯化作
用-----------------------------------------------------------------26
肆、酵母菌ValRS 的附加區段不會鍵結tRNA----------------27
伍、酵母菌ValRS 的附加區段不會鍵結DNA-----------------28
討論------------------------------------------------------------------30
參考文獻------------------------------------------------------------------------32
表----------------------------------------------------------------------------------38
圖----------------------------------------------------------------------------------40
附錄-------------------------------------------------------------------------------58
參考文獻 參考文獻
Arnez, J. G. and Moras, D. (1997) Structural and functional
consideration of the aminoacylation reaction. TIBS. 22: 211-216.
Azad, A. K., Stanford, D. R., Sarkar, S. and Hopper, A. K. (2001) Role
of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear
export. Molecular Biology of the Cell. 12: 1381-1392.
Borgford, T. J., Brand, N. J., Gray, T. E. and Fersht, A. R. (1987) The
valyl-tRNA synthetase from Bacillus stearothermophilus has
considerable sequence homology with the isoleucyl-tRNA
synthetase from Escherichia coli. Biochemistry. 26: 2480-2486.
Burbaum, J. J. and Schimmel, P. (1991) Structional relationships and
the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266:
16965-16968.
Cahuzac, B., Berthonneau, E., Birlirakis, N., Guittet, E. and Mirande,
M. (2000) A recurrent RNA-binding domain is appended to
eukaryotic aminoacyl-tRNA synthetases. EMBO J. 19: 445-452.
Chatton, B., Walter, P., Ebel, J. -P., Lacroute, F. and Fasiolo, F. (1988)
The yeast VAS1gene encodes both mitochondrial and cytoplasmic
valyl-tRNA synthetase. J. Biol. Chem. 263: 52-57.Cusack, S. (1997) Aminoacyl-tRNA synthetase. Current Opinion in
Structural Biology. 7: 881-889.
Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D. (1990)
Partition of tRNA synthetases into two classes based on mutually
exclusive sets of sequence motifs. Nature. 347: 203-206.
Farrow, M. A., Nordin, B. E. and Schimmel, P. (1999) Nucleotide
determinants for tRNA-dependent amino acid discrimination by a
class I tRNA synthetase. Biochemistry. 38: 16898-16903.
Felter, S., Diatewa, M., Schneider, C. and Stahl, A. J. (1981) Yeast
mitochondrial and cytoplasmic valyl-tRNA synthetase. Biochem.
Biophys. Res. Commun. 98: 727-734.
Frugier, M., Florentz, C. and Giegé, R. (1992) Anticodon-independent
aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad.
Sci. 89: 3990-3994.
Galani, K., Großhans, H. Deinert, K. Hurt, E. C. and Simos, G. (2001)
The intracellular location of two aminoacyl-tRNA synthetase
depends on complex formation with Arc1p. EMBO J. 20:
6889-6898.
Hale, S. P., Auld, D. S., Schmidt, E. and Schimmel, P. (1997) Discrete
determinants in transfer RNA for editing and aminoacylation.
Science. 276: 1250-1252.
Hashimoto, T., Sánchez, L. B., Shirakura, T., Muller, M. and
Hasegawa, M. (1998) Secondary absence of mitochondria in
Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA
synthetase phylogeny. Proc. Natl. Acad. Sci. 95: 6860-6865.
Heck, J. D. and Hatfield, G. W. (1988) Valyl-tRNA synthetase gene of
Escherichia coli K12. J. Biol. Chem. 263: 857-867.
Hendrickson, T. L., Nomanbhoy, T. K. and Schimmel, P. (2000) Errors
from selective disruption of the editing center in a tRNA synthetase.
Biochemistry. 39: 8180-8186.
Horowitz, J., Chu, W. C., Derrick, W. B., Liu, J. C. –H., Liu, M. and
Yue, D. (1999) Synthetase recognition determinants of E. coli valine
transfer RNA. Biochemistry. 38: 7737-7746.
Kaminska, M., Shalak, V. and Mirande M. (2001) The appended
C-domain of human methionyl-tRNA synthetase has a
tRNA-sequestering function. Biochemistry. 40: 14309-14316.
Lin, L. and Schimmel, P. (1996) Mutational analysis suggests the same
design for editing activities of two tRNA synthetase. Biochemistry.
35: 5596-5601.
Lin, L. and Schimmel, P. (1996) Mutational analysis suggests the same
design for editing activities of two tRNA synthetases. Biochemistry.
35: 5596-5601.
Luo, D., Leautey, J., Grunberg-Manago, M. and Putzer, H. (1997)
Structure and regulation of expression of the Bacillus subtilis
valyl-tRNA synthetase gene. J. Bacteriol. 179: 2472-2478.
Monnier, A., Bell e , R., Morales, J., Cormier, P., Boulben, S. and M-L,
O. (2001) Evidence for regulation of protein synthesis at the
elongation step by CDK1/cyclin B phosphrylation. Nucleic. Acids.
Res. 29: 1453-1457.
Natsoulis, G., Hilger, F. and Fink, G. R. (1986) The HTS1 gene encodes
both the cytoplasmic and mitochondrial histidine tRNA synthetases
of S. cerevisiae. Cell. 46: 235-243.
Negrutskii, B. S., Shalak, V. F., Kerjan, P., El’skaya, A. V. and
Mirande, M. (1999) Functional interaction of mammalian
valyl-tRNA synthetase with elongation factor EF-1a in the complex
with EF-1H. J. Biol. Chem. 274: 4545-4550.
Pouplana, L. R. and Schimmel, P. (2001) Two classes of tRNA
synthetases suggested by sterically compatible dockings on tRNA
acceptor stem. Cell. 104: 191-193.
Quevillon, S. and Mirande, M. (1996) The p18 component of the
multisynthetase complex shares a protein motif with the ß and ?
subunits of eukaryotic elongation factor 1. FEBS. 395: 63-67.
Schimmel, P. and Schmidt, E. (1995) Making connections:
RNA-dependent amino acid recognition. TIBS. 20:1-2
Schimmel, P. and Wang, C. –C. (1999) Getting tRNA synthetases into
the nucleus. TIBS. 24: 127-128.
Souciet, G., Menand, B.,Ovesna, J., Cosset, A., Dietrich, A. and Wintz,
H. (1999) Characterization of two bifunctional arabdopsis thaliana
genes coding for mitochondrial and cytosolic forms of valyl-tRNA
synthetase and threonyl-tRNA synthetase by alternative use of two
in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Tardif, K. D., Liu, M., Vitseva, O., Hou, Y. M. and Horowitz, J. (2001)
Misacylation and editing by Escherichia colivalyl-tRNA synthetase:
evidence for two tRNA binding sites. Biochemistry. 40: 8118-8125.
Wang, C. –C. and Schimmel P. (1999) Species barrier to RNA
recognition overcome with nonspecific RNA binding domains. J.
Biol. Chem. 274: 16508-16512.
Wang, C. –C., Morales, A. J. and Schimmel, P. (2000) Functional
redundancy in the nonspecific RNA binding domain of a class I
tRNA synthetase. J. Biol. Chem. 275: 17180-17186.
Weiner, A. M. (1999) Molecular evolution: aminoacyl-tRNA synthetases
on the loose. Current Biology. 9: 842-844.
Whelihan, E. F. and Schimmel, P. (1997) Rescuing an essential
enzyme-RNA complex with a non-essential appended domain.
EMBO J. 16: 2968-2974.
指導教授 王健家(Chen-Chia Wang) 審核日期 2002-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明