博碩士論文 89224015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.230.119.106
姓名 葉傳山(Chuan-Shan Yeh)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Kineosphaera limosa 菌株中 phaC 基因之序列分析
(Sequence analysis of the phaC gene of Kineosphaera limosa)
相關論文
★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色★ Classification of powdery mildews on ornamental plants in northern Taiwan
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
★ 探討酵母菌ALA1基因的non-AUG轉譯機制★ 酵母菌 alanyl-tRNA synthetase 的細胞內傳輸機制
★ 鑑定酵母菌中具高親和力的tRNA結合蛋白★ 酵母菌ALA1基因的表現調控機制
★ 酵母菌ALA1 基因轉譯起始機制的研究★ 探討一個真核tRNA合成酶的附加區段之轉錄活化活性
★ 一個雙重功能的酵母菌 tRNA 合成酶之研究★ 探討酵母菌中non-AUG起始點的周邊序列對轉譯起始效率的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 利用微生物系統生產可分解性的材質,來解決全球普遍性的塑膠廢棄物污染問題,是日益重要的課題。PHA 是一種聚合性的酯類,常發現於不同種類的革蘭氏陽性菌、革蘭氏陰性菌以及古細菌的細胞內。這類聚酯化合物以一種不可溶的聚合體沈積在細胞質中,作為額外碳源與能量來源的儲存物質。由於 PHA 具有生物可分解性、熱塑性等特性,被認為是生物科技工業重要產業之一。最近,劉文佐博士實驗室由活性汙泥系統分離出一株名為 Kineosphaera limosa (代號Lpha5) 的革蘭氏陽性菌,此菌具有合成大量 PHA 的能力。值得令人注意的是 Lpha5 在無氧、有氧的環境下皆能合成 PHA 。
我們的研究結果顯示,在 Lpha5 菌株中的確存有 phaC 基因(PHA 合成酵素);我們使用低專一性序列引子 (degenerate DNA primer) 成功的將部份 Lpha5 的 phaC 基因選殖出來,經過 DNA 和蛋白質序列的比對,發現我們選殖 Lpha5 的 phaC 基因片段與其他菌種的 phaC 基因有很高比例的相似性;現在我們利用此 phaC 基因片段作為探針,使用 DNA 雜交的方式篩選 Lpha5 的基因庫 (genomic library),希望能更進一步找到完整的 phaC 基因叢,以便能進一步研究 Lpha5菌株中有哪些蛋白質或酵素牽涉到 PHA 的代謝。
摘要(英) The utilization of biological systems for production of biodegradable materials is becoming more important as a solution of the problems concerning plastic waste and the global environment. Polyhydroxyalkanoic acids (PHA) represent a complex class of storage polyesters that are synthesized by a wide range of different gram-positive and gram-negative bacteria as well as by some archaea. These polyesters are deposited as a form of insoluble cytoplasmic inclusions, and can be used as intracellular carbon and energy-storage materials. Since these bacterial PHAs are biodegradable thermoplastics, they have attracted industrial attention as possible candidates for large-scale biotechnological products. Recently, a gram-positive bacterium, named Lpha5, capable of accumulating high levels of PHA, was isolated in Professor WT Liu’s lab from an activated sludge system fed with acetate. An especially intriguing feature regarding the metabolism of this PHA-producing strain is that it can make the polyesters in aerobic as well as anaerobic environments.
Using a set of degenerate primers, I was able to amplify a partial sequence of the phaC gene (PHA synthase) from Lpha5 chromosomal DNA. Protein sequence deduced from this segment of DNA revealed a high similarity to phaC genes from other organisms, suggesting an evolutionarconservation for this class of enzymes. A genetic screening is underway to clone the whole PHA gene cluster, which will profoundly further our understanding of PHA matabolism is this particular bacterium.
關鍵字(中) ★ 聚羥丁酸
★ 生物可分解塑膠
關鍵字(英) ★ kineosphaera limosa
★ phaC
★ PHB
★ PHA
論文目次 目 錄
文中摘要-----------------------------------------------------------1
英文摘要-----------------------------------------------------------2
第一章 序論-----------------------------------------------------4
壹、生物可分解塑膠---------------------------------------------4
貳、微生物的聚羥丁酸------------------------------------------5
參、PHA 聚合物存在的生理意義----------------------------6
肆、PHA 的分類-------------------------------------------------8
伍、PHA 生產菌群----------------------------------------------8
陸、PHA 合成酵素---------------------------------------------10
柒、研究材料: Kineosphaera limosa (Lpha5)---------------11
第二章 研究目的---------------------------------------------------13
第三章 材料與方法------------------------------------------------14
壹、培養基的製備-----------------------------------------------14
貳、Lpha5 的培養----------------------------------------------17
參、Lpha5 染色體 DNA 的分離----------------------------17
肆、聚合酵素鏈反應-------------------------------------------18
伍、Lpha5 染色體基因庫的構築----------------------------22
陸、染色體基因庫的篩選-------------------------------------26
柒、實驗方法流程圖-------------------------------------------30
捌、染色體徒步-------------------------------------------------31
第四章 結果與討論----------------------------------------------35
壹、Lpha5 的培養----------------------------------------------35
貳、Lpha5 染色體 DNA 的分離----------------------------36
參、聚合酵素鏈反應-------------------------------------------37
肆、PCR 產物之選殖------------------------------------------38
伍、PCR 產物之 DNA 序列---------------------------------39
陸、核酸序列與資料庫比對之結果-------------------------41
柒、DNA 探針雜交後顯影之結果--------------------------43
捌、染色體徒步之結果----------------------------------------45
第五章 未來展望---------------------------------------------51
參考文獻---------------------------------------------------------------52
圖目錄------------------------------------------------------------------IV
圖 目 錄
圖一、PHB 化學結構圖----------------------------------------------5
圖二、微生物可將代謝中間產物轉變PHA-----------------------7
圖三、Alcaligenes eutrophus 的 PHA 合成酵素---------------10
圖四、Lpha5 在電子顯微鏡下的形態----------------------------12
圖五、Lpha5 的培養-------------------------------------------------35
圖六、Lpha5 染色體 DNA 的分離-------------------------------36
圖七、Semi-nasted PCR 放大phaC 基因------------------------37
圖八、PCR 產物之選殖結果---------------------------------------38
圖九、DNA 序列與資料庫比對之結果--------------------------41
圖十、蛋白質序列與資料庫比對之結果-------------------------42
圖十一、DNA探針雜交後顯影結果------------------------------43
圖十二、DNA探針雜交後顯影結果------------------------------44
圖十三、染色體徒步之 PCR 產物--------------------------------45
參考文獻 Abe, C., Y. Taima, Y. Nakamura, and Y. Doi. 1990. New bacterial copolyesters of 3-hydroxyalkanoates and 3-hydroxy-v-fluoroalkanoates produced by Pseudomonas oleovorans. Polym. Commun. 31: 404-406.
Ackermann, J.-U., and W. Babel. 1997. Growth-associated synthesis of poly(hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of an internal bottleneck. Appl. Microbiol. Biotechnol. 47: 144-149.
Akiyama, M., and Y. Doi. 1993. Production of poly(3-hydroxyalkanoates) from a,v-alkanedioic acids and hydroxylated fatty acids by Alcaligenes sp. Biotechnol. Lett. 15: 163-168.
Asenjo, J. A., A. S. Schmidt, P. R. Anderson, and B. A. Andrews. 1995. Effect of single nutrient limitation on poly-b-hydroxybutyrate molecularweight distribution in Alcaligenes eutrophus. Biotechnol. Bioeng. 46: 497-502.
Bourque, D., Y. Pomerleau, and D. Groleau. 1995. High-cell-density production of poly-b-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl. Microbiol. Biotechnol. 44: 367-376.
Casini, E., T. C. de Rijk, P. de Waard, and G. Eggink. 1997. Synthesis of poly(hydroxyalkanoate) from hydrolyzed linseed oil. J. Environ. Polym. Degr. 5: 153-158.
Cevallos, M. A., S. Encarnacio´n, A. Leija, Y. Mora, and J. Mora. 1996. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-b-hydroxybutyrate. J. Bacteriol. 178: 1646-1654.
Choi, M. H., and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254.
Chung, Y. J., H. J. Cha, J. S. Yeo, and Y. J. Yoo. 1997. Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric) acid using propionic acid by pH regulation. J. Ferment. Bioeng. 83: 492-495.
Corbell, N., and J. E. Loper. 1995. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177: 6230-6236.
Curley, J. M., B. Hazer, R. W. Lenz, and R. C. Fuller. 1996. Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29: 1762-1766.
Dawes, E. A., and P. J. Senior. 1973. The role and regulation of energy reserve polymers in micro-organisms. Adv. Microb. Physiol. 10: 135-266.
De Smet, M. J., G. Eggink, B. Witholt, J. Kingma, and H. Wynberg. 1983. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol. 154: 870-878.
Doi, Y., and C. Abe. 1990. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-w-chloroal-kanoates. Macromolecules 23: 3705-3707.
Doi, Y., S. Kitamura, and H. Abe. 1995. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28: 4822-4828.
Eggink, G., P. de Waard, and G. N. M. Huijberts. 1995. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can. J. Microbiol. 41(Suppl. 1): 14-21.
Fidler, S., and D. Dennis. 1992. Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol. Rev. 103: 231-236.
Fritzsche, K., R. W. Lenz, and R. C. Fuller. 1990. Bacterial polyesterscontaining branched poly(b-hydroxyalkanoate) units. Int. J. Biol. Macromol. 12: 92-101.
Fukui, T., A. Yoshimoto, M. Matsumoto, S. Hosokawa, T. Saito, H. Nishikawa, and K. Tomita. 1976. Enzymatic synthesis of poly-b-hydroxybutyrate in Zoogloea ramigera. Arch. Microbiol. 110: 149-156.
Fukui, T., N. Shiomi, and Y. Doi. 1998. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180: 667-673.
Fukui, T., and Y. Doi. 1997. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J. Bacteriol. 179: 4821-4830.
Griebel, R., Z. Smith, and J. Merrick. 1968. Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native polybeta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7: 3676-3681.
Haywood, G. W., A. J. Anderson, and E. A. Dawes. 1989. The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 57: 1-6.
Hein, S., H. Tran, and A. Steinbuchel. 1998. Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch. Microbiol. 170: 162-17
Huisman, G. W., E. Wonink, R. Meima, B. Kazemier, P. Terpstra, and B. Witholt. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191-2198.
Kato, M., H. J. Bao, C.-K. Kang, and Y. Doi. 1996. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 45: 363-370.
Kim, G. J., I. Y. Lee, S. C. Yoon, Y. C. Shin, and Y. H. Prak. 1997. Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 20: 500-505.
Kim, Y. B., R. W. Lenz, and R. C. Fuller. 1992. Poly(b-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25: 1852-1857.
Liebergesell, M., K. Sonomoto, M. Madkour, F. Mayer, and A. Steinbuchel. 1994. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur. J. Biochem. 226: 71-80.
Liu, W.-T., Mino, T., Matsuo, T., and Nakamura, K. 2000. Isolation, characterization and identification of polyhydroxyalkanoate-accumulating bacteria from activated sludge. J. Biosci. Bioeng. 90: 494-500.
Peoples, O. P., and A. J. Sinskey. 1989. Poly-b-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264: 15298-15303.
Peoples, O. P., S. Masamune, C. T. Walsh, and A. J. Sinskey. 1987. Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene. J. Biol. Chem. 262: 97-102.
Rehm, H. A., and A. Steinbuchel. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25: 3-19.
Schembri, M. A., R. C. Bayly, and J. K. Davies. 1994. Cloning and analysis of the polyhydroxyalkanoic acid synthase gene from an Acinetobacter sp.: evidence that the gene is both plasmid and chromosomally located. FEMS Microbiol. Lett. 118: 145-152.
Schubert, P., N. Kruger, and A. Steinbuchel. 1991. Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthesis operon: identification of the N terminus of poly(3-hydroxybutyrate) synthase and the identification of the promoter. J. Bacteriol. 173: 168-175.
Senior, P. J., G. A. Beech, G. A. F. Ritchie, and E. A. Dawes. 1972. The role of oxygen limitation in the formation of poly-b-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem. J. 128: 1193-1201.
Sheu, D. S., Wang, Y. T., and Lee, C. Y. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology. 146: 2019-2025.
Timm, A., and A. Steinbuchel. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomona aeroginosa PAO1. Eur. J. Biochem. 209: 15-30.
Umeda, F., Y. Kitano, Y. Murakami, K. Yagi, Y. Miura, and T. Mizoguchi. 1998. Cloning and sequence analysis of the poly(3-hydroxyalkanoic acid)-synthesis genes of Pseudomonas acidophila. Appl. Biochem. Biotechnol. 72: 341-352.
Wallen, L. L., and W. K. Rohwedder. 1974. Poly-b-hydroxyalkanoate from activated sludge. Environ. Science Technol. 8: 576-579.
Wang, J. G., and L. R. Bakken. 1998. Screening of soil bacteria for poly-b-hydroxybutyric acid production and its role in the survival of starvation. Microbiol. Ecol. 35: 94-101.
指導教授 王健家(Chien-Chia Wang) 審核日期 2003-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明