博碩士論文 89226020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.17.45
姓名 林駿宏(Chun-Hung Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
(Investigation of Growth and Characteristics of Si Nanoclusters Embedded in Si Oxide Film)
相關論文
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ P型氮化鎵歐姆接觸製作研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,吾人設計一新式的雷射輔助化學氣相沉積系統,來沉積含有矽奈米結構之氧化矽薄膜。此一雷射輔助化學氣相沉積系統乃是利用傳統的電漿增強式化學氣相沉積系統在結合一外加之二氧化碳雷射,並利用矽烷與笑氣作為反應氣體。

由於矽烷氣體分子對波長10.6 μm的二氧化碳雷射光之光子有很強的吸收,所以吾人利用二氧化碳雷射的輔助來加強反應矽烷氣體分子的活化並矽烷氣體分子之分解,並使得所沉積的氧化矽薄膜中形成矽奈米結構。吾人利用不同功率(0-40 W)的二氧化碳雷射來輔助成長,並利用相分離的模式來說明矽奈米結構在薄膜形成的過程之中由氧化矽的基體中分離出來的情況。研究中發現,二氧化碳雷射的輔助使得氧化矽薄膜在沉積時發生相分離的情形,亦即分離出矽奈米結構與氧化矽的基體,且當二氧化碳雷射功率提升時,所形成之矽奈米結構的尺寸也愈大,使得量測到的光激發光譜有紅移的現象,並進一部透過矽奈米結構與氧化矽基體的混合物模型來計算並佐證此一項分離的現象。

此外,調整矽烷氣體流量比(矽烷/總反應氣體之比例)為0.6~0.75的比例來沉積氧化矽薄膜,並利用無二氧化碳雷射輔助之電漿增強式化學氣相沉積系統所沉積之薄膜做為對照。所沉積的薄膜則分別利用傅氏轉換紅外線光譜、拉曼光譜、光激發光譜、能量散佈光譜與穿透式電子顯微鏡進行分析。吾人發現可以調變所形成之矽奈米結構的尺寸由3.7 nm減小至2.7 nm。透過熱處理,可以增強矽奈米結構從氧化矽基體分離的情況,使得氧化矽基體變成更趨近於二氧化矽,同時矽奈米結構顆粒的尺寸也增加。

另外,吾人也發現光激發光譜的強度會隨著激發光源(氦鎘雷射)的照射時間會有衰退的現象,利用傅氏轉換紅外線光譜的定量與定性分析,得知氦鎘雷射的持續照射會造成矽氫鍵結的斷鍵,而形成非放射複合中心,因而使得光激發光譜的強度衰退。利用氫氣環境在400℃下進行5分鐘的熱處理,可以修補所形成之懸鍵,且利用氫氣熱處理,亦可修補薄膜中原先就存在的懸鍵,進而提昇光激發光之發光。
摘要(英) In this thesis, we present a novel laser-assisted chemical vapor deposition (LACVD) system for growing Si nanoclusters embedded in a Si oxide matrix at a room temperature. This LACVD system was constructed by combining a conventional plasma enhanced chemical vapor deposition (PECVD) system and a CO2-excited laser. A gaseous mixture of SiH4 and N2O was used for the reactants.

In view of the point of a high absorption coefficient of a wavelength of 10.6 μm by SiH4, an external CO2 laser beam was guided into a conventional PECVD system. A CO2 laser with various powers was used in a conventional PECVD system to assist the decomposition of SiH4 molecules and also to separate the Si clusters from Si oxide matrix. The phase separation model was proposed to discuss the inconsistency between the calculated and actual composition of O/Si atomic ratio. The dependencies of the photoluminescence (PL) photon energy and intensity on the CO2 laser power were observed. The mixture model of both pure Si and pure oxide phases were also used for calculating the refractive indices of the matrix. These results have demonstrated the existence of laser-induced phase-separated Si nanoclusters and the relation between the sizes of Si nanoclusters and the CO2 laser power were also elucidated.

Varying N2O gas ratio (defined as N2O/total gases) from 0.6 to 0.75 caused the observed PL light emission to vary from 1.65eV to 1.92eV without post-annealing. A phase-separated model and PL measurements were used to identify Si nanoclusters embedded in Si suboxides. Furthermore, the average dot sizes of the films grown by the LACVD system with XN2O=0.6, 0.67, 0.71, and 0.75 are identified by images of transmission electron microscope (TEM) as 3.7, 3.2, 3.0, and 2.7 nm, respectively.

Further, the optical characteristics and annealing behaviors were also studied. The PL emission intensity increased with the annealing temperature until some temperature, then decreased as the annealing temperature increased. Since defect centers in Si suboxides would be gradually annihilated during thermal annealing process, the PL emission intensity originated from defect centers would be reduced with the annealing temperature. The quantum confinement effect is found as the dominant PL emission mechanism in Si nanoclusters embedded in Si suboxides.

Si nanoclusters would be separated from the Si suboxide matrices due to the decomposition assistance of SiH4 by CO2 laser. Raman spectroscopy and photoluminescence measurements of the as-deposited and annealed films were used to identify the Si nanoclusters embedded in the Si suboxide matrices were identified. By studying the light emission behaviors, we deduce that the quantum confinement effect is the dominant mechanism.

A degradation of PL intensity by irradiating the sample with helium-cadmium (He-Cd) laser was also observed. The dependence of PL degradation on long-term irradiation of He-Cd laser was investigated. We found that He-Cd laser induced breakage of Si-H related bonds resulted in Si dangling bonds such as D centers and Pb centers, which are known to reduce the PL intensity. The PL intensity of the He-Cd laser irradiated samples can be improved to the level of as-deposited samples after subjecting the samples to a H2 ambient at 400 °C for 5min. Post-annealing in H2 could also help to increase the PL intensity plays by passivating the defect centers in as-deposited samples.
關鍵字(中) ★ 二氧化碳雷射
★ 量子侷限效應
★ 矽奈米結構
★ 電漿增強型化學氣相沉積
關鍵字(英) ★ CO2 laser
★ PECVD
★ quantum confinement effect
★ Si nanocluster
論文目次 Abstract

List of Tables

List of Figures

Chapter 1 Introduction……………………………………………...….1

Chapter 2 Laser-assisted phase-separated Si nanoclusters from a Si oxide matrix grown at room temperature…………………………………….………......5

2-1 Introduction……………………………………………….….5

2-2 Experimental procedure…………………………………..….6

2-3 Experimental results and discussions..…………………….…8

2-4 Conclusions………………………………………………....17

Chapter 3 Growth of Si nanoclusters embedded in a Si oxide matrix with different size by varying N2O gas ratio………………………………………..………………18

3-1 Introduction…………………………………………………18

3-2 Experimental procedure………………………………….…19

3-3 Experimental results and discussions………………………20

3-4 Conclusions…………………………………………….…..25

Chapter 4 Characteristics and annealing behaviors of Si nanoclusters embedded in Si oxide matrices…………..………………..26

4-1 Introduction…………………………………………………26

4-2 Experimental procedure ……………………………………27

4-3 Experimental results and discussions………………………27

4-4 Conclusions…………………………………………….…..30

Chapter 5 Photoluminescence degradation and passivation mechanisms of Si nanoclusters in Si oxide matrix……………………….……………….…….…..32

5-1 Introduction…………………………………………………32

5-2 Experimental procedure……………………………….……33

5-3 Experimental results and discussions………………………34

5-4 Conclusions………………………………………………...42

Chapter 6 Conclusions ………………………………………………..44

References ……………………………………………………………..46
參考文獻 Chapter 1
[1.1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. vol. 57, pp. 1046-1048, 1990.
[1.2] R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, and I. Solomon, “Conditions of elaboration of luminescent porous silicon from hydrogenated amorphous silicon”, Phys. Rev. Lett. vol. 77, pp. 1885-1888, 1996.
[1.3] G. G. Qin, H. Z. Song, B. R. Zhang, J. Lin, J. Q. Duan, and G. Q. Yao, “Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon”, Phys. Rev. B, vol. 54, pp. 2548-2555, 1996.
[1.4] G. G. Qin, X. S. Liu, S. Y. Ma, J. Lin, G. Q. Yao, X. Y. Lin, and K. X. Lin, “Photoluminescence mechanism for blue-light-emitting porous silicon ”, Phys. Rev. B, vol. 55, pp. 12876-12879, 1997.
[1.5] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The Role of Oxygen”, Phys. Rev. Lett. vol. 82, pp. 197-200, 1999.
[1.6] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol. 46, pp. 15578–15581, 1992.
[1.7] A. P. Li, F. Flack, M. G. Lagally, M. F. Chisholm, K. Yoo, Z. Zhang, H. H. Weitering, and J. F. Wendelken, “Photoluminescence and local structure of Ge nanoclusters on Si without a wetting layer”, Phys. Rev. B, vol. 69, pp. 245310-245314 (2004).
[1.8] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, “Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells”, Phys. Rev. B, vol. 53, pp. R13242–R13245, 1996.
[1.9] M. K. Mishra, B. Tyagi, R. V. Jasra, “Synthesis and characterization of nano-crystalline sulfated zirconia by sol-gel method”, J. Mol. Catal. A-Chem. Vol. 223 (1-2), pp. 61-65, 2004.
[1.10] M. E. Rubin, G. Medeiros-Ribeiro, J. J. O''Shea, M. A. Chin, E. Y. Lee, P. M. Petroff, and V. Narayanamurti, “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy”, Phys. Rev. Lett. vol. 77, pp. 5268–5271, 1996.
[1.11] W. Sheng and J. P. Leburton, “Electron-hole alignment in InAs/GaAs self-assembled quantum dots: Effects of chemical composition and dot shape”, Phys. Rev. B, vol. 63, pp. 161301-161304, 2001.
[1.12] K. W. Sun, J. C. Wu, B. C. Lee, and C. P. Lee, “Selective growth and photoluminescence studies of InAs self-organized quantum dot arrays on patterned GaAs (001) substrates”, Nanotechnology, vol. 13, pp. 576–580, 2002.
[1.13] S. Sauvage, P. Boucaud, R. P. S. M. Lobo, F. Bras, G. Fishman, R. Prazeres, F. Glotin, J. M. Ortega, and J.M. Gérard, “Long polaron lifetime in InAs/GaAs self-assembled quantum dots”, Phys. Rev. Lett. vol. 88, pp. 177402-177405, 2002.
[1.14] W. Sheng and J.P. Leburton, “Anomalous quantum-confined stark effects in stacked InAs/GaAs self-assembled quantum dots”, Phys. Rev. Lett. vol. 88, pp. 167401-167404, 2002.
Chapter 2
[2.1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. vol. 57, pp. 1046-1048, 1990.
[2.2] H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix”, J. Appl. Phys. vol. 89, pp. 237-243, 2001.
[2.3] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, G. Mariotto, P. Folegati, R. Ferragut, and A. Dupasquier, “Study of precipitate in Si-rich SiO2 films ”, Appl. Surf. Sci. vol. 194, pp. 106-111, 2002.
[2.4] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, “Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiO2 matrix”, J. Non-Crys. Solids vol. 227-230, pp. 507-512, 1998.
[2.5] M. Meunier, J. H. Flint, J. S. Haggerty, and D. Adler, “Laser-induced chemical vapor deposition of hydrogenated amorphous silicon. II. Film properties”, J. Appl. Phys. vol. 62, pp. 2822-2829, 1987.
[2.6] T. F. Deutsch, “Infrared laser photochemistry of silane”, J. Chem. Phys. vol. 70, pp. 1187-1192, 1979.
[2.7] G. Lucovsky, “A structural interpretation of the infrared-absorption spectra of a-Si:H:O alloys”, Sol. Energy Mater. vol. 8, pp. 165-175, 1982.
[2.8] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[2.9] H. R. Philipp, J. Non-Cryst. Solids, vol. 8-10, pp. 627, 1972.
[2.10] R. J. Temkin, “Analysis of radial-distribution function of SiOx”, J. Non-Cryst. Solids, vol. 17, pp. 215-230, 1975.
[2.11] S. Hayashi, T. Nagareda, Y. Kanzawa, and K. Yamamoto, “Photoluminance of Si-rich SiO2-films/Si clusters as luminescent centers”, Jpn. J. Appl. Phys., Part 1, vol. 32, pp. 3840-3845, 1993.
[2.12] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films”, J. Appl. Phys. vol. 92, pp. 4678-4683, 2002.
[2.13] G. Allan, C. Delerue, and M. Lannoo, “Electronic structure of amorphous silicon nanoclusters”, Phys. Rev. Lett. vol. 78, pp. 3161-3164, 1997.
[2.14] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995.
[2.15] N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride”, Phys. Rev. Lett. vol. 86, pp. 1355-1357, 2001.
[2.16] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
[2.17] Z. Knittl, Optics of thin films (London, New York, Wiley, 1976).
[2.18] M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films”, Thin Solid Films, vol. 402, pp. 154-161, 2002.
[2.19] W. L. Scopel, M. C. A. Fantini, M. I. Alayo, and I. Pereyra, “Structural investigation of Si-rich amorphous silicon oxynitride films”, Thin Solid Films, vol. 425, pp. 275-281 (2003).
Chapter 3
[3.1] L. Brus: Light Emission in Silicon. From Physics to Devices, Semiconductors and Semimetals, eds. D. Lockwood (Academic, New York, 1998) Vol. 49, p. 303.
[3.2] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995.
[3.3] T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, and P. D. Townsend, “Optical properties of silicon nanoclusters fabricated by ion implantation”, J. Appl. Phys. vol. 83, pp. 6018-6022, 1998.
[3.4] S. Furukawa and T. Miyasato, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 5726-5729, 1988.
[3.5] Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang, and X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix”, Appl. Phys. Lett. vol. 81, pp. 4174-4176, 2002.
[3.6] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach”, Appl. Phys. Lett. vol. 80, pp. 661-663, 2002.
[3.7] M. Ehbrecht and F. Huisken, “Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane”, Phys. Rev. B, vol. 59, pp. 2975-2985, 1999.
[3.8] J. A. Carlisle, M. Dongol, I. N. Germanenko, Y. B. Pithawalla, and M. S. El-Shall, “Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core”, Chem. Phys. Lett. vol. 326, pp. 335-340, 2000.
[3.9] G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement”, Appl. Phys. Lett. vol. 80, pp. 4834-4836, 2002.
[3.10] G. Lucovsky, “A structural interpretation of the infrared-absorption spectra of a-Si:H:O alloys”, Sol. Energy Mater. vol. 8, pp. 165-175, 1982.
[3.11] J. L. Yeh and S. C. Lee, “Structural and optical properties of amorphous silicon oxynitride”, J. Appl. Phys. vol. 79, pp. 656-663, 1995.
[3.12] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B, vol. 28, pp. 3225-3233, 1983.
[3.13] T. F. Deutsch, “Infrared laser photochemistry of silane”, J. Chem. Phys. vol. 70, pp. 1187-1192, 1979.
[3.14] D. Fernández, P. González, J. Pou, E. García, J. Serra, B. León, M. Pérez-Amor, and C. Garrido, “CO2 laser chemical vapor deposition of silica films in a parallel configuration: A study of gas phase phenomena”, J. Vac. Sci. Technol. A, vol. 12, pp. 484-493, 1994.
[3.15] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[3.16] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, “Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiO2 matrix”, J. Non-Crys. Solids vol. 227-230, pp. 507-512, 1998.
[3.17] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
Chapter 4
[4.1] R. Tsu, “Silicon-based quantum-wells”, Nature (London), vol. 364, pp. 19-19, 1993.
[4.2] D. A. B. Miller, “Optoelectronics-silicon sees the light”, Nature (London), vol. 378, pp. 238-238, 1995.
[4.3] D. Lockwood, Light Emission in Silicon, From Physics to Devices. Semiconductors and Semimetals (Academic, New York, 1998) vol. 49
[4.4] B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice”, J. Appl. Phys. vol. 92, pp. 3564-3568, 2002.
[4.5] B. Garrido Fermandez, M. López, C. Garcia, A. Pérez-Rodriguez, J. R. Marante, C. Bonafos, M. Carrada, and A. Claverie, ”Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2”, J. Appl. Phys. vol. 91, pp. 798-807, 2002.
[4.6] M. Molinari, H. Rinnert, and M. Vergnat, “Visible photoluminescence in amorphous SiOx thin films prepared by silicon evaporation under a molecular oxygen atmosphere”, Appl. Phys. Lett. vol 82, pp. 3877-3879, 2003.
[4.7] K. S. Min, K. V. Schlegov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Photorefractive grating formation in piezoelectric La3Ga5SiO14:Pr3 + crystals”, Appl. Phys. Lett. vol. 69, pp. 2003-2005, 1996.
[4.8] M. V. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum Dots: The role of oxygen”, Phys. Rev. Lett. vol. 82, pp. 197-200, 1999.
[4.9] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995
[4.10] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol. 46, pp. 15578-15581, 1992.
[4.11] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
[4.12] Y. Kanzawa, S. Hayashi, and K. Yamamoto, J. Phys.: Condens. Matter, vol. 8, pp. 4823, 1996.
[4.13] H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix”, J. Appl. Phys. vol. 89, pp. 237-243, 2001.
Chapter 5
[5.1] R. Tsu, “Silicon-based quantum-wells”, Nature (London), vol. 364, pp. 19-19, 1993.
[5.2] D. A. B. Miller, “Optoelectronics-silicon sees the light”, Nature (London), vol. 378, pp. 238-238, 1995.
[5.3] L. Brus: Light Emission in Silicon. From Physics to Devices, Semiconductors and Semimetals, eds. D. Lockwood (Academic, New York, 1998) Vol. 49, p. 303.
[5.4] Q. Zhang, S. C. Bayliss, D. A. Hutt, “Blue photoluminescence and local structure of Si nanostructures embedded in SiO2 matrices”, Appl. Phys. Lett. vol. 66, pp. 1977-1979, 1995.
[5.5] B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice”, J. Appl. Phys. vol. 92, pp. 3564-3568, 2002.
[5.6] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films”, J. Appl. Phys. vol. 92 pp. 4678-4683, 2002.
[5.7] C. T. Lee and C. H. Lin, “Si nanocrystals embedded in Si euboxide matrix grown by laser-assisted chemical vapor deposition at room temperature”, Jpn. J. Appl. Phys., Part 1, vol. 43, pp. 2793-2794, 2004.
[5.8] N. I. Cho, Y. M. Kim, C. Hong, H. B. Chae, C. K. Kim, and B. T. Lee, “A study of the effect of UV laser annealing on a-SiC films for structure ordering”, J. Korean Phys. Soc. vol. 37, pp. 998-1002, 2000.
[5.9] G.H. Kroll, P.J. Benning, T.R. Ohno, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, “Interaction of O2 with C60-photon-induced oxidation”, Chem. Phys. Lett. vol. 181, pp. 112-116, 1991.
[5.10] D. Gracin, V. Borjanovic, B. Vlahovic, A. Sunda-Meya, T. M.Patterson, J. M. Dutta, S. Hauger, I. Pinayev, M. E. Ware, D. Alexson, R. J. Nemanich, B. Von Roedern, “Selective bond breaking in amorphous hydrogenated silicon by using Duke FEL”, Nucl. Instrum. & Methods A, vol. 475, pp. 635-639, 2001.
[5.11] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B, vol. 28, pp. 3225-3233, 1983.
[5.12] E. Fogarassy, A. Slaoui, C. Fuchs, and J. L. Regolini, “Rapid thermal oxidation of silicon monoxide”, Appl. Phys. Lett. vol. 51, pp. 337-339, 1987.
[5.13] J. C. Knights, R. A. Street, and G. Lucovsky, “Electric and structural properties of plasma-deposited a-Si:O:H-story of O2”, J. Non-Cryst. Solids. vol. 35&36, pp. 279-284, 1980.
[5.14] H. Touir, K. Zellama, and J. F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities”, Phys. Rev. B, vol. 59, pp. 10076-10083, 1999.
[5.15] Z. X. Ma, X. B. Liao, J. He, W. C. Cheng, G. Z. Yue, Y. Q. Wang, and G. L. Kong, “Annealing behaviors of photoluminescence from SiOx:H”, J. Appl. Phys. vol. 83, pp. 7934-7939, 1998.
[5.16] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[5.17] G. Lucovsky, “Chemical bonding of alloy and dopant atoms in amorphous-silicon”, J. Phys. (Paris) Colloq. Vol. 42, pp. 741-744, 1981.
[5.18] J. L. Yeh and S. C. Lee, “Structural and optical properties of amorphous silicon oxynitride”, J. Appl. Phys. vol. 79, pp. 656-663, 1996.
[5.19] T. Inokuma, L. He, Y. Kurata, and S. Hasegawa, “Electron-spin-resonance spectra of silicon dangling bonds with oxygen back bonds in plasma-deposited amorphous SiOx”, J. Electrochem. Soc. vol. 142, pp. 2346-2351, 1995.
[5.20] M. J. Uren, J. H. Stathis, and E. Cartier, “Conductance measurements on Pb centers at the (111) Si:SiO2 interface”, J. Appl. Phys. vol. 80, pp. 3915-3922, 1996.
[5.21] B. Garrido Fermandez, M. López, C. Garcia, A. Pérez-Rodriguez, J. R. Marante, C. Bonafos, M. Carrada, and A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2”, J. Appl. Phys. vol. 91, pp. 798-807, 2002.
[5.22] E. San Andrés, A. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F. J. López, “Thermally induced modifications on bonding configuration and density of defects of plasma deposited SiOx:H films”, J. Appl. Phys. vol. 92, pp. 1906-1913, 2002.
[5.23] L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus, and F. Wooten, “Optical properties of passivated Si nanocrystals and SiOx nanostructures”, Phys. Rev. B, vol. 54, pp. 5029-5037, 1996.
[5.24] N. A. Hill and K. B. Whaley, “Size dependence of excitons in silicon nanocrystals”, Phys. Rev. Lett. vol. 75, pp. 1130-1133, 1995.
[5.25] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Appl. Phys. Lett. vol. 78, pp. 2575-2577, 2001.
[5.26] T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, and S. Hasegawa, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, J. Appl. Phys. vol. 83, pp. 2228-2234, 1998.
[5.27] M. Molonari, H. Rinnert, and M. Vergnat, “Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen”, Appl. Phys. Lett. vol. 79, pp. 2172-2174, 2001.
指導教授 張正陽、李清庭
(Jeng-Yang Chang、Ching-Ting Lee)
審核日期 2005-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明