博碩士論文 89241003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.83.236.51
姓名 傅先智(Sian-Jhih Fu)  查詢紙本館藏   畢業系所 數學系
論文名稱 從傳染病家庭資料估計與時間相關的傳佈參數
(Estimating Temporal Transmission Parameters from Infectious Household data)
相關論文
★ 用Pfam-A建議BLAST之計分表(Scoring Matrix)與空格罰分(Gap Penality)★ Motif長度未知之貝氏多重序列比對方法
★ 現狀家庭數據在相關伽瑪致病傾向模型之無母數估計★ 伯氏先驗分布在貝氏存活分析 與貝氏遞升迴歸的應用
★ 利用兄弟數據之多點遺傳連鎖分析方法★ 半母數混合模型估計的一致性及其應用
★ 隨機右設限數據之風險率的貝氏估計方法★ 利用Bernstein多項式來研究二元迴歸
★ 連續型變數之記數過程在傳染病資料上之應用★ 數據依賴誤差之階梯函數迴歸的貝氏方法
★ 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們提出一個兩層次混合隨機傳染病模型,其中的傳佈參數是可以隨時間改變的。
我們以家中至少有一人感染的家庭為基本單位,同時考慮家中的感染率及全區的感染率。因為不同的家庭
開始感染的時間常常不同,而且傳染病控制的措施也隨著時間作改變。所以,讓模型中感染率及隔離率隨時間改變
是一個合理的期望。由於感染時間不易取得,我們只以每家感染者的隔離時間為資料作估計。我們用這個模型估計
一個常被引用的天花傳染病的資料,與之前一些學者的估計作比較,結果顯示我們的模型也可以得出近似的值,但更
精緻些,可以有更多推論。此外,我們也作了一個模擬的研究。
摘要(英) This paper proposes a two-level mixing stochastic epidemic model in which the transmission parameters
may change over time.
We take households that have at least one infective as the standard unit in the study and consider
both a within-household infection rate and a global
infection rate. In view of the fact that outbreaks may happen at
different time points in different households and control measures
may change over time, it is desirable to allow these infection
rates and the removal rates varying with time. We study in this paper
the temporal infection rates and removal rates based on only the
removal times in each household, since the infection times are
usually not observable. We apply our model to the classic smallpox epidemic dataset occuring in a closed
community of 120 individuals in Abakaliki, Nigeria. The estimation results seem to suggest that our more
sophisticated method at least works. A simulation study is also carried out.
關鍵字(中) ★ 貝氏估計
★ 時間相關的傳佈參數
關鍵字(英) ★ temporal transmission parameter
★ Bayesian estimation
論文目次 中文摘要  ............................................ i
英文摘要  ........................................... ii
誌謝   .......................................... iii
目錄    ........................................... iv
圖目錄   ............................................ v
表目錄   ........................................... vi
1. Introduction .........................................1
2. The model and the complete data likelihood ..........5
2.1 The model ...................................... 5
2.2 The likelihood ................................ 7
3. Bayesian inference based on removal times............10
4. Simulation studies .................................14
4.1 Data generation for point processes ..............14
4.2 Data description .................................16
4.3 Simulation studies under the model assumptions ...17
4.4 Inference with global infection ignored ..........18
5. Application ....................................... 19
6. Discussion ....................................... 21
References ............................................36
參考文獻 Addy, C. L., Longini, I. M., and Haber, M. (1991) A generalized stochastic model for the analysis of infectious disease final size data. {it Biometrics}, { f 47}, 961-974.
Andersen, P. K., Borgan, $emptyset$., Gill, R. D., and Keiding, N. (1993) {it Statistical Models Based on Counting Processes.} Springer-Verlag, New York.
Andersson, H. and Britton, T. (1998) Heterogeneity in epidemic models and its effect on the spread of
infection. {it J. Appl. Prob.}, { f 35}, 651-661.
Andersson, H. and Britton, T. (2000) {it Stochastic epidemic models and their statistical analysis.} Springer
Lecture Notes in Statistics, New York.
Bailey, N. T. J. (1975) {it The Mathematical Theory of Infectious Diseases and its Application.} London: Griffin.
Bailey, N. T. J. and Thomas, A. S. (1971) The estimation of parameters from population data on the general stochastic epidemic. {it Theor. Pop. Biol.}, { f 2}, 53-70.
Ball, F. G. (1983) The threshold behaviour of epidemic models. {it J. Appl. Probab.}, { f 20}, 227-241.
Ball, F. G., Mollison, D., and Scalia-Tomba, G. (1997) Epidemics with two levels of mixing. {it Ann. Appli. Probab.}, { f 7}, 46-89.
Becker, N. G. (1979) An estimation procedure for household disease data. {it Biometrika}, { f 66}, No. 2, 271-277.
Becker, N. G. (1981) The infectiousness of a disease within households. {it Biometrika}, { f 68}, No. 1, 134-141.
Becker, N. G. (1983) Analysis of data from a single epidemic. {it Austral. J. Static.}, { f 25}, 191-197.
Becker, N. G. (1986) A generalized linear modelling approach to the analysis of data from a single epidemic. In {it Proc. Pacific Statist. Congress, eds.} Francis, I. S., Manly, B. F. J. and Lam, F. C., 464-467. Amsterdam: North-Holland.
Becker, N. G. (1989) {it Analysis of Infectious Disease Data.} Chapman and Hall: London.
Becker, N. G. and Hopper J. L. (1983) The infectiousness of a disease in a community of households. {it Biometrika}, { f 70}, No. 1, 29-39.
Becker, N. G. and Yip, P. (1989) Analysis of variation in an infection rate. {it Austr. J. Stat.}, { f 31}, 42-52.
Becker, N. G. and Dietz, K. (1995) The effect of the household distribution on transmission and control of highly infectious diseases. {it Math. Biosci.}, { f 127}, 207-219.
Becker, N. G. and Hall, R. (1996) Immunization levels for preventing epidemics in a community of households made up of individuals of different types. {it Math. Biosci.}, { f 132}, 205-216.
Becker, N. G. and Starczak, D. N. (1997) Optimal vaccination strategies for a community of households.
{it Math. Biosci.}, { f 139}, 117-132.
Becker, N. G. and Britton, T. (1999) Statistical studies of infectous disease incidence. {it J. R. Statist. Soc. B.},
{ f 61}, Part 2, 287-307.
Br`{e}maud, P. (1981) {it Point processes and Queues: Martingale Dynamics.} Springer-Verlag, New York.
Britton, T. (1998) Estimation in multitype epidemics. {it J. R. Statist. Soc.} B, { f 60}, Part 4, 663-679.
Cauchemez, S., Carrat F., Viboud C., and Valleron, A.J. (2004) A Bayesian MCMC approach to study transmission of influenza:
application to household longitudinal data. {it Statistics in Medicine}, { f 23},
3459-3487.
Chang, I. S., Hsiung, C. A., Wu, Y. J., and Yang C. C. (2005) Bayesian survival analysis using Bernstein polynomials. {it Scand. J. Statist.}, { f 32}, 447-466.
Chang, I. S., Chien, L. C., Hsiung, C. A., Wen, C. C., and Wu, Y. J. (2007) Shape restricted regression with random Bernstein polynomials. {it IMS Lecture Notes-Monograph Series Complex Datasets and Inverse Problems:} {it Tomography, Networks and Beyond}, { f 54}, 187-202.
Chen, M. and Schmeiser, B. (1998) Towards black-box sampling. {it J. Comput. Graph. Statist.}, { f 7}, 1-22.
Demiris N. and O'Neill P. D. (2005) Bayesian inference for epidemics with two level of mixing. {it Scand. J. Statist.},
{ f 32}, 265-280.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004) {it Bayesian Data Analysis.} Chapman and Hall/CRC.
Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,
{it Biometrika}, { f 82}, Part 4, 711-732.
Isham, M. N., O'Shaughnessy, C. D. and Smith, B. (1996) A random graph model for the final size distribution
of household infections. {it Statistics in Medicine}, { f 15}, 837-843.
Liu, J. (2001) {it Monte Carlo Strategies in Scientific Computing.} Springer-Verlag, New York.
Longini, I. M. and Koopman, J. S. (1982) Household and community transmisson parameters from final distributions
of infections in households. {it Biometrics}, { f 38}, 115-126.
M"{u}ller, P. (1993) Alternatives to the Gibbs sampling scheme. {it Technical report, Institute of statistics and Decision Science, Duke Univ}.
O'Neill, P. D. and Roberts, G. O. (1999) Bayesian inference for partially observed stochastic epidemics.
{it J. R. Statist. Soc.} A, { f 162}, Part 1, 121-129.
O'Neill, P. D., Balding, D. J., Becker, N. G., Eerola, M., and Mollison, D. (2000) Analyses of infectious disease data from household outbreaks by
Markov Chain Monte Carlo methods. {it Appl. statist.}, { f 49}, 517-542.
Rhodes, P. H., Halloran, M. E., and Longini, I. M. (1996) Counting process models for infectious disease data: distinguishing
exposure to infection from susceptibility. {it J. R. Statist. Soc.} B, { f 58}, 751-762.
Robert, C. P. and Casella, G. (2004) {it Monte Carlo Statistical Methods.} Springer, New York.
指導教授 張憶壽(I-Shou Chang) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明