博碩士論文 89241008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.119.131.72
姓名 張仲浩(Chung-Haw Chang)  查詢紙本館藏   畢業系所 數學系
論文名稱 超立方體與其變形的覆蓋容器
(Spanning Container on Variations of Hypercubes)
相關論文
★ n 階置換Cayley 圖之研究★ 低維度Cayley圖之研究
★ 路徑與圈嵌入有缺損的超立方體★ 樹圖最大特徵值的討論
★ On the Spectrum of Trees
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 假設圖形 G 的連接度為κ(G), 當k ≦κ(G) 時, 根據 Menger’s 定理對圖
形 G 中任意兩個相異點 u 與 v ,均存在 k 條連通u 與 v 的不重複邊與點(除
了u 與 v 外) 之路徑。一個 k- container C(u,v)是指一個圖形 G 擁有k 條連通 u
與 v 的不重複邊與點(除了u 與 v 外)之路徑的集合。若圖 G 裏面的每一個點
都包含在C(u,v)中,我們稱此 k- container 為一個 k*- container C(u,v)。若圖形 G
中任意相異兩點都存在 k*- container , 我們稱此圖形 G 為k*-連通。若對任何的
k,1≦ k ≦ κ(G),圖形 G 為 k*-連通, 則我們稱此圖 G 是超級覆蓋連通
(super spanning connected)。
然而,當我們研究二分圖G 的 k*-連通時,我們需要做一些修正。一個二分
圖G 中,任意兩個不同顏色的點 u 與 v 之間若存在一個 k*-container,則我們
稱其為 k*- laceable。一個k 正則二分圖G ,若對所有的 1≦ k ≦ κ(G) 來說,
它皆為 k*- laceable ,則我們稱此二分圖G 為超級覆蓋laceable (super spanning
laceable)。一個 k*- container C(u,v) = { P1, … , Pk },若對所有的
1 ≦ i, j ≦ k , | |Pi|-|Pj| | ≦ 2 都成立,則我們稱此 k*- container C(u,v)是
equitable。
超立方體是最有名的網路圖之ㄧ。 在本論文中,我們將討論超立方體 ,摺
疊型超立方體 及 加強型超立方體的延伸連通性,超級延伸連通及相關的問題。
摘要(英) Let G be a graph with connectivity κ(G). It follows from Menger’’s Theorem that
there are k vertex-disjoint paths joining any two distinct vertices when k ≦κ(G).
A k -container C ( u, v) of a graph G is a set of k vertex-disjoint paths between u and v.
A k-container is a k*-container if it contains all vertices of G . A graph G is
k*-connected if there exists a k*-container between any two vertices. A graph G is
super spanning connected if G is k*-connected for every 1 ≦ k ≦κ(G).
However, we need some modification as we study bipartite k-connected graphs.
A bipartite graph G is k*-laceable if there exists a k*-container between any two
vertices from different partite sets. A bipartite graph G is super spanning laceable if G
is k*-laceable for 1 ≦ k ≦ κ(G). A k*-container C ( u, v) ={ P1, … , Pk } is
equitable if | | Pi | - | Pj | | ≦ 2, 1 ≦ i , j ≦ k.
The hypercube Qn is one of the most popular networks. In this thesis, we will
discuss that the spanning connectivity, the spanning laceability, and related problems
of hypercube Qn, folded hypercube FQn, and enhanced hypercube Qn,m.
關鍵字(中) ★ 超級延伸連通
★ 延伸容器
★ 容器
★ 摺疊型超立方體
★ 加強型超立方體
★ 超級延伸可蕾斯化
★ 超立方體
關鍵字(英) ★ spanning container
★ container
★ hypercube
★ super spanning laceability
★ super spanning connected
★ enhanced hypercube
★ folded hypercube
論文目次 Contents
Abstract(in Chinese) i
Abstract(in English) ii
Contents iii
List of Figures v
1 Introduction 1
1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . 1
1.2 Undiected Cayley graphs . . . . . . . . . . . . . . . . . . 3
2 Container and connectivity 11
2.1 Container 11
2.2 Container in ypercubes . . . . . . . . . . . . . . . . . . . 12
2.3 Container in folded hypercubes . . . . . . . . . . . . . . . . . 16
2.4 Container in enhanced hypercubes . . . . . . . . . . . . . . . . 18
3 The spanning container and spanning connectivity 22
3.1 The spanning container . . . . . . . . . . . . . . . . . . . 22
3.2 The super spanning property of hypercubes . . . . . . . . . . . 25
3.3 The spanning connectivity of folded hypercubes . . . . . . . . . 35
3.3.1 k^*-fan spanning property of hypercubes. . . . . . . . . 35
3.3.2 Construction of (n + 1) ^*-containers . . . . . . . . . 46
3.4 The spanning connectivity of enhanced hypercubes . . . . . . . . 53
3.4.1 The super spanning properties of enhanced hypercubes . . . . . 54
3.4.2 Construction of (n + 1)^*-containers . . . . . . . . . . . .. 62
4 Equitable spanning laceability of hypercubes 71
4.1 Preliminaries and known results . .. .. .. . 71
4.2 Extended k-parallel spanning property of hypercubes . . . . . . 73
4.3 Equitable laceability of hypercubes. . . . . . . . . 87
5 Discussion and conclusion 93
Bibliography 94
參考文獻 [1] M. Albert, R. E. L. Aldred, D. Holton, and J. Sheehan, On 3∗-connected graphs,
Australasian Journal of Combinatorics, 24 (2001), 193-208.
[2] S. Abraham and K. Padmanabhan, Performance of the direct binary n-cube network
for multiprocessors, IEEE Transactions on Computers, 38 (1989), 1000-1011.
[3] S. B. Akers, B. Krishnamurthy, and D. Harel, The star graph: an attractive alter-
native to the n-cube, Proceedings of International Conference on Parallel Processing,
(1986), 216-223.
[4] S. B. Akers, and B. Krishnamurthy, A group-theoretic model for symmetric intercon-
nection networks, IEEE Transactions on Computers, 38 (1989), 555-566.
[5] W. C. Athas and C. L. Seitz, Multicomputers: message-passing concurrent comput-
ers, IEEE Computer. Mag., 21(1988), 9-24.
[6] L. N. Bhuyan and D. P. Agrawal, Generalized hypercube and hyperbus structures
for a computer network, IEEE Transactions on Computers, 33 (1984), 323-333.
[7] J. A. Bondy and U. S. R. Murty, Graph theory with applications, North Holland,
New York, 1980.
[8] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, Lee distance and topological properties of
k-ary n-cubes, IEEE Transactions on Computers, 44 (1995), 1021-1030.
[9] F. Cao, D. Z. Du, D. Frank Hsu, and S. H. Teng, Fault tolerance properties of
pyramid networks, IEEE Transactions on Computers, 48 (1999), 88-93.
[10] C. P. Chang, J. N. Wang, and L. H. Hsu, Topogical properties of twisted cube,
Information Sciences, 113 (1999), 147-167.
[11] C. H. Chang, C. K. Lin, H. M. Huang, and L. H. Hsu, The super laceability of the
hypercubes, Information Processing Letters, 92 (2004), 15-21.
[12] M. Y. Chan and S. J. Lee, On the existence of hamiltonian circuits in faulty hyper-
cubes, SIAM J. Discrete Mathematics, 4 (1991), 511-527.
[13] C. C. Chen, J. Chen, Optimal parallel Routing in star networks, IEEE Transactions
on Computers, 46 (1997), 1293-1303.
[14] Y. C. Chen, C. H. Tsai, L. H. Hsu, and Jimmy J. M. Tan On some super fault-
tolerant hamiltonian graphs, Computers and Mathematics with Applications, 148
(2004), 729-741.
[15] S. A. Choudum, and R. U. Nandini, Complete binary trees in folded and enhanced
hypercubes, Networks, vol.43(4) (2004), 266-272.
[16] I. Chung, Construction of a parallel and shortest routing algorithm on recursive cir-
culant networks, Proceedings of the Fourth International Conference/Exhibition on
High Performance computing in the Asia-Pacific Region, 2(2000), 580-585.
[17] K. Day and A. Tripathi, Characterization of node disjoint paths in arrangement
graphs, Technical Report TR 91-43 Computer Science Department, University of
Minnesota, 1991.
[18] K. Day and A. Tripathi, Arrangement graphs: a class of generalized star graphs,
Information Processing Letters, 42 (1992), 235-241.
[19] K. Day and A. Tripathi, A comparative study of topological properties of hypercubes
and star graphs, IEEE Transactions on Parallel and Distributed Systems, 5 (1994),
31-38.
[20] K. Day and A. Ayyoub, Fault diameter of k-ary n-cube networks , IEEE Transactions
on Parrallel and Distributed Systems, 8 (1997), 903-907.
[21] M. Dietsfelbinger, S. Madhavapeddy, and I. H. Sudborough, Three disjoint path
paradigms and star networks, Proceedings of the third IEEE Symposium on Parrallel
and Distributed Processing, (1991), 400-406.
[22] D. R. Duh and G. H. Chen, Topological properties of WK-recursive networks, Journal
of Parallel and Distributed Computing, 23 (1994), 468-474.
[23] D. R. Duh, G. H. Chen and J. F. Fang, Algorithm and properties of a new two-level
network with folded hypercubes as basic modules, IEEE Transaction on Parallel and
Distributed Systems, 6 (1995), 714-723.
[24] D. R. Duh, G. H. Chen and D. Frank. Hsu, Combinatorial properties of generalized
hypercube graphs, Information Processing Letters, 57 (1996), 41-45.
[25] A. E. Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE
Transaction on Parallel and Distributed Systems, 2 (1991), 31-42.
[26] A. H. Estafahanian and S. L. Hakimi, Fault-tolerant routing in de Bruijn communi-
cation networks, IEEE Transactions on Computers, 34 (1985), 777-788.
[27] A. H. Estafahanian and L. M. Ni and B. E. Sagan, The twisted N-cube with application
to multiprocessing, IEEE Transactions on Computers, 40 (1991), 88-93.
[28] E. Oh and J. Chen, Parrallel routing in hypercube networks with faulty nodes, IEEE
, (2001), 338-345.
[29] J. S. Fu, G. H. Chen, and D. R. Duh, Node-disjoint paths and related problems on
hierarchical cubic networks, Netwoks, vol. 40(3) (2002), 142-154.
[30] S. Gao, and D. F. Hsu, Short containers in Cayley graphs, DIMACS Technical Report
2001-18, 2001.
[31] T. F. Gonzalez and D. Serena, n-Cube network: node disjoint shortest paths for
maximal distance pair of vertices, Parallel Computing, 30 (2004), 973-998.
[32] Q. P. Gu and S. Peng, Algorithms for node disjoint paths in incomplete star net-
works, Proceedings of International Conference on Parrallel and Distributed Systems,
(1994), 296-303.
[33] Q. P. Gu and S. Peng, Node-to-node cluster fault tolerent routing in star graphs,
Information Processing Letters, 56 (1995), 29-35.
[34] F. Harary, Graph theory, Reading, MA: Addison-wesley, 1972.
[35] F. Harary and M. Lewinter, Hypercubes and other recursively defined hamilton lace-
able graphs, Congressus Numerantium 60 (1987), 81-84.
[36] F. Harary and M. Lewinter, The starlike trees which span a hypercube, Computers
and Mathematics with Applications, 15 (1988), 299-302.
[37] S. Y. Hsieh, G. H. Chen, and C. W. Ho, Hamiltonian-laceability of star graphs,
Networks 36 (2000), 225–232.
[38] D. F. Hsu, Interconnection networks and algorithms, Networks, Special issue, 1993.
[39] D. F. Hsu, On container width and length in graphs, groups and networks, IEICE
Transaction on Fundamentals of Electronics, Communications and Computer Science
, E77-A (1994), 668-680.
[40] J. Kim and K. G. Shin, Operationlly enhanced folded hypercube, IEEE Transaction
on Parallel and Distributed systems, 5 (1994), 1310-1316.
[41] M. Kobeissi, M. Mollard, Disjoint cycles and spanning graphs of hypercubes, Discrete
Mathematics, 288 (2004), 73-87.
[42] S. Lakshmivarahan, and S. K. Dhall, Ring, torus, and hypercube Architec-
tures/algorithms for parallel computing, Parallel Computing, 25 (1999), 1877-1906.
[43] A. E. Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE
Transactions on Parrael and Distributed Systems, 2(3) (1991), 31-42.
[44] S. Latifi, S. Q. Zheng, and N. Bagherzadeh, Optimal ring embedding in hypercubes
with faulty links, Proceedings of the IEEE Symposium on Fault-Tolerant Computing,
42 (1992), 178-184.
[45] S. Latifi, Combinatorial analysis of the fault-diameter of the n-cube, IEEE Transactions
on Computers, 42 (1993), 27-33.
[46] S. Latifi, On the fault diameter of the star graphs, Information Processing Letters,
46 (1993), 143-150.
[47] C. N. Lai, G. H. Chen, and D. R. Duh, Constructing one-to-many disjoint paths in
folded hypercubes, IEEE Transactions on Computers, 51 (2002), 33-45.
[48] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu, Fault-tolerant routing in circulant
networks and cycle prefix networks, Annals of Combinatorics, 2 (1998), 165-172.
[49] F. T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes, San Mateo, Calif.: Morgan Kaufmann, 1992.
[50] M. Lewinter and W. Widulski, Hyper-hamilton laceable and caterpillar-spannable
product graphs, Computers and Mathematics with Applications, 34 (11) (1997), 99–
104.
[51] Q. Li, D. Sotteau, and J. Xu, 2-diameter of de Bruijn graphs, Networks, 28 (1996),
7-14.
[52] C. K. Lin, H. M. Huang, and L. H. Hsu, The super connectivity of the pancake graphs
and the super laceability of the star graphs, Theoretical Computer Science, 339 (2005),
257-271.
[53] S. Madhavapeddy and I. H. Sudborough, A topological property of hypercube: node
disjoint paths, Proceedings of the Second IEEE Symposium on Parrallel and Distributed
Processing, (1990), 532-539.
[54] K. Menger, Zur allgemeinen kurventheorie, Fundamentable Mathematik, 10 (1927),
95-115.
[55] F. J. Meyer and D. K. Ptadhan, Flip-trees: fault-tolerant graphs with wide containers,
IEEE Transactions on Computers, 37 (1988), 472-478.
[56] S. Ohring and S. K. Das, Folded petersen cube networks: new competitors for the
hypercubes, IEEE Transactions on Parrael and Distributed Systems, 7 (1996), 151-
168.
[57] O. Ore, Hamiltonian Connected Graph, Journal des Mathematiques Pures et Appliques,
42 (1963), 121-27.
[58] C. D. Park, and K. Y. Chwa, Hamiltonian properties on the class of hypercube-like
networks, Information Processing Letters, 91 (2004), 11-17.
[59] Y. Rouskov and P. Srimani, Fault diameter of star graphs, Information Processing
Letters, 48 (1993), 243-251.
[60] Y. Saad and M. H. Schultz, Topological properties of hypercubes, IEEE Transactions
on Computers, 37 (1988), 867-872.
[61] G. Simmons, Almost all n-dimensional rectangular lattices are hamilton laceable,
Congressus Numerantium 21 (1978), 649-661.
[62] C. M. Sun, H. M. Hung and L. H. Hsu, Mutually indepedent hamiltonian paths and
cyales in hypercubes, accepted by Journal of Interconnection Networks.
[63] C. H. Tsai, Jimmy J.M.Tan, T. Liang, and L. H. Hsu, Fault-tolerant hamiltonian
laceability of hypercubes, Information Processing Letters, 83 (2002), 301-306.
[64] C. H. Tsai, Jimmy J.M.Tan, and L. H. Hsu, The super-connected property of recursive
circulant graphs, Information Processing Letters, 91 (2004), 293-298.
[65] N. F. Tzeng and S. Wei, Enhanced hypercubes, IEEE Transactions on Computers, 40
(1991), 284-294.
[66] A. S. Vaidya, P. S. N. Rao, and S. R. Shankar A class of hypercube-like networks, in:
Pro. of the 5th Symp. On Parallel and Distributed Processing, IEEE Comput. Soc.,
Los alamitos, CA, December, pp. 800–803, 1993.
[67] D. Wang, Diagnosability of hypercubes and enhanced hypercubes under the comprison
diagnosis model, IEEE Transactions on Computers, 48 (1999), 1369-1374.
[68] D.Wang, Embedding hamiltonian cycles into folded hypercubes with faulty links, Journal
of Parallel and Distributed Computing, 61 (2001), 545-564.
[69] C. S. Yang, J. F. Wang, J. Y. Lee, and F. T. Boesch, Graph theoretic analysis for
the boolean n-cube networks, IEEE Transactions on Circuits and Systems, 35 (1988),
1175-1179.
指導教授 黃華民(Hua-Min Huang) 審核日期 2006-5-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明