博碩士論文 89242001 詳細資訊


姓名 楊仲準(Chun-Chuen Yang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究
(Interplay among the structural, transport, and magnetic behaviors in Pr-based and Bi-based CMR material.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Pr0.65Ca0.25Sr0.1MnO3的晶體結構已透過中子與X光繞射實驗分析。在室溫下PCSMO屬於斜方晶系的Pbnm空間群,並且發現在200 K附近發生了楊-泰勒扭曲。在高解析度中子繞射譜圖、比熱、磁化率、與電阻率實驗均發現在190 K時,系統進入的電荷有序態。在此一溫區外加超過2 T的磁場後,系統會進入電荷去局域化態。可能的原因為磁致伸縮效應改變晶體的扭曲程度造成場致CO-CD轉變。溫度低於180 K,Mn原子的磁矩開始形成p-CE型反鐵磁有序。在100 K至80 K間,磁矩發生部分自旋反轉的現象。25 K之下Pr亦呈現發生磁有序。本研究得以獲得磁場對溫度的相圖,呈現Pr0.65Ca0.25Sr0.1MnO3系統的物理特性。
室溫下Bi1-xCaxMn0.95Cr0.05O3(x=0.5、0.6)皆為斜方晶系的Pbnm空間群。x=0.5與0.6的樣品分別在285 K與在280 K時發生楊-泰勒扭曲。兩個樣品電阻率的實驗皆可以使用不定域跳躍的電阻率理論:ρVHR=ρ0exp[(T/T0)^1/4]來加以描述。這顯示了BCMCO系統中電子-聲子強烈的耦合。在90 K與80 K時,x=0.5與0.6的樣品分別發生Mn的磁有序。兩樣品磁結構均呈現叢集與鍊狀結構交錯的相分離現象。Cr摻雜破壞Mn-O-Mn的相關性,造成電荷有序態的抑制與Mn磁有序溫度降低。
摘要(英) Crystall structure of Pr0.65Ca0.25Sr0.1MnO3 at room temperature was revealed by using x-ray and neutron diffraction technologies. It crystallized into an orthorombic Pbnm phase at room temperature, and Jahn-Teller distortion was observed at 200 K. All high resolution neutron diffraction experiment, heat capacity, ac susceptibility, and resistivity measurements reveal a charge ordered state at 190 K, which can be transformed into the charge delocalized state by an applied magnetic field of strength larger then 2 T. We believed that it is the magnetostriction effect that transforms the CO state into the CD one. Below 180 K, the Mn moment becomes ordered into the p-CE AFM arrangement. A spin reorientation occurs between 100 K and 80 K. The Pr moments were also found to be ordered at 25 K. We obtained an H-T phase diagram for describing the thermo-magneto properties of Pr0.65Ca0.25Sr0.1MnO3.
Both Bi1-xCaxMn0.95Cr0.05O3, with x=0.5 and 0.6 crystallized into an orthorombic Pbnm phase at room temperature. The Jahn-Teller distortion were observed at 285 K and 280 K of the x=0.5 and 0.6 compounds, respectively. The resistivity can be described by variable range hopping mechanism, where ρVHR=ρ0exp[(T/T0)^1/4], indicating a strong electron and phonon coupling for the present BCMCO system. The Mn were orderd at 90 K and 80 K for x=0.5 and 0.6 compounds, respectively. Phase separation, where Mn4+ clusters were surrounded by Mn3+ ions, was revealed in the ordered spin arrangement at low temperatures.
關鍵字(中) ★ 磁有序
★ 磁結構
★ 電荷有序
★ 龐磁阻
★ 中子繞射
關鍵字(英) ★ CMR
★ Neutron Scattering
★ Magnetic ordering
★ Magnetic structure
★ Charge ordering
論文目次 摘要…………………………………………………………………………………………………I
Abstract……………………………………………………………………………………………II
致謝………………………………………………………………………………………………III
目錄…………………………………………………………………………………………………IV
圖目…………………………………………………………………………………………………V
表目………………………………………………………………………………………………IX
第一章 簡介
1.1 龐磁阻材料簡介………………………………………………………………………………1
1.2 研究目的………………………………………………………………………………………22
Reference…………………………………………………………………………………………23
第二章 樣品備製與實驗儀器
2.1 樣品備製……………………………………………………………………………………26
2.2 實驗儀器……………………………………………………………………………………27
Reference…………………………………………………………………………………………42
第三章 實驗理論
3.1 交流磁化率理論……………………………………………………………………………43
3.2 電阻率理論…………………………………………………………………………………48
3.3 比熱理論……………………………………………………………………………………51
3.4 中子散射理論………………………………………………………………………………54
Reference…………………………………………………………………………………………66
第四章 實驗結果與分析
4.1 Pr0.65Ca0.25Sr0.1MnO3結果分析…………………………………………………………67
4.2 Bi1-xCaxMn0.95Cr0.05O3結果分析………………………………………………………106
Reference………………………………………………………………………………………130
第五章 結論……………………………………………………………………………………132
附錄一 中子磁繞射強度模擬程式……………………………………………………………136
附錄二 中子磁繞射強度模擬程式輸入檔……………………………………………………151
Curriculumvitae………………………………………………………………………………152
Publications……………………………………………………………………………………153
參考文獻 Reference Chapter 1
1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472, (1988).
2. R. Mahesh, R. Wang and M. Itoh, Phys. Rev. B 57, 104 (1998).
3. G. H. Jonker and J. H. Vansanten, Physica 16, 337 (1950).
4. C. Zener, Phys. Rev. 82, 403 (1951).
5. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
6. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
7. John B. Goodenough, Phys. Rev. 100, 564 (1955).
8. S. Roberts, Phys. Rev. 81, 865-868 (1951).
9. U. H. Bents, Phys. Rev. 106, 225-230 (1957)
10. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
11. J. Q. Li, M. Uehara, C. Tsuruta, Matsui, and Z. X. Zhao, Phys. Rev. Lett. 82, 2386 (1999).
12. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
13. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
14. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
15. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
16. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
17. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
18. Z. Jirák, S. Krupicka, Z. Simsa, M. Dlouha, and Vratislav, J. Magn. Magn. Mater. 53, 153 (1985).
19. E. Pollert, S. Krupička, and E. Kuzmičová, J. Phys. Chem. Solids 43, 1137 (1982).
20. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett.75, 3336 (1995).
21. H. Y. Hwang, T. T. M. Palstra, S-W. Cheong, and B. Batlogg, Phys. Rev. B 52, 15046 (1995).
22. Y. Moritomo, A. A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995).
23. Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, and Z. Vratislav, 53, 153 (1985)
24. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
25. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
26. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
27. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
28. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
29. D. E. Cox, P. G. Radaelli, M. Mrezio. S-W. Cheong, Phys. Rev. B 57, 3305 (1998).
30. V. A. Bokov, N. A. Grigoryan, and M. F. Bryzhina, Phys. Status Solidi 20, 745 (1967).
31. H. Chiba, M. Kikuchi, K. Kusaba, Y. Muraoka, and Y. Syono, Solid State Commun. 99, 499 (1996).
32. W. Bao, J. D. Axe, C. H. Chen, and S-W. Cheong, Phys. Rev. Lett. 78, 543 (1997).
33. H. L. Liu, S. L. Cooper, and S-W. Cheong, Phys. Rev. Lett. 81, 4684 (1998).
34. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
35. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999)
36. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)
Reference Chapter 2
1. 中子架設相關資料與規格可在NIST網站查詢,詳細位置如下http://rrdjazz.nist.gov/instruments/
2. 詳細雙 模型的解釋在「Measurement of Heat Capacity By Fitting the Whole Temperature Response of a Heat-Pulse Calorimeter」的「fitting curve」一節,Jih Shang Hwang, Kai Lin, and Cheng Tien, Rev. Sci. Instrum. Vol. 68 (1), January 1997, p.94.
3. PPMS Hardware & Options Manual (Quantum Design 1999).
Reference Chapter 3
1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 31-33, (Saunders College, Philadelphia, 1976).
2. C. Kittel, Introduction to Solid State Physics, 7th Ed., (J. Wiley and Sons, New York, 1996).
3. Chikazumi, Physics of Magnetism, (J. Wiley Serise on the Science and Technology of Materials, New York, 1964).
4. 黃昆(原著),韓汝琦(改編),固態物理學,高等教育出版社,北京,2002.
5. H. Y. Hwang, S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
6. A. J. Millis, Phys. Rev. B53, 8434, (1996).
7. L. J. Zou, H. Q. Lin, Q. Q. Zheng, J. App. Phys. 83 ,7362 (1998).
8. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
9. G. E. Bacon, Neutron Diffraction, 3th Ed., (Clarendon press, Oxford, 1975).
10. G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering, (Cambridge University press, Cambridge, 1978).
11. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1, (Clarendon press, Oxford, 1984).
Reference Chapter 4
1. D. E. Cox, P. G. Padaelli, M. Marezio, and S-W Cheong, Phys. Rev. B, 57, 3305 (1998).
2. H. Yoshizawa, H. Kawano, Y. Tomioko, and Y. Tokura, Phys. Rev. B, 52, R13 145 (1995).
3. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
4. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
5. A. J. Millis, Phys. Rev. B 53, 8434 (1996).
6. C. Zener, Phys. Rev. 82, 403 (1951).
7. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
8. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
9. J. M. De Teresa, M. R. Ibarra, C. Marquina, and P. A. Algarabel, Phys. Rev. B 54, 12689 (1996).
10. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
11. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).
12. A. Banerjee, S. Pal, and B. K. Chaudhuri, J. Chem. Phys. 115, 1550 (2001).
13. X. Liu, H. Zhu, and Y. Zhang, Phys. Rev. B 65, 024412 (2002).
14. T. Kimura, R. Kumai, Y. Okimoto, Y. Tomioka, and Y. Tokura, Phys. Rev. B 62, 15021 (2000).
15. S. B. Oseroff, M. Torikachvili, J. Singley, S. Ali, S.-W. Cheong, and S. Schultz, Phys. Rev. B 53, 6521 (1996).
16. C. Rettori, D. Rao, J. Singley, D. Kidwell, and S. B. Oseroff, M. T. Causa, J. J. Neumeier, K. J. McClellan, S-W. Cheong, and S. Schultz, Phys. Rev. B 55, 3083 (1997).
17. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
18. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999).
指導教授 李文献(Wen-Hsien Li) 審核日期 2004-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡