博碩士論文 89242004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.209.80.87
姓名 葉信杏(Shin-Shing Yeh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論
(Columnar structure of aligned dipoles in two dimension and mean-field theory for inhomogeneous electrolytes)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 彈性懸掛棍在旋轉系統下之行為★ 膠體球在電解質溶液中的擴散泳
★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function
★ 剛體球在不對稱垂直震盪系統中的動力學行為★ Water Strider Locomotion
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第一部份我們利用平均場的近似方法來計算非均勻電解質的自由能,與之前的理論相比,我們得到對自由能有重要貢獻的另外兩項:其一,當電解質密度有緩慢變化時會比均勻的時候額外貢獻一微分項。其二,當離子被侷限於交界面的一邊時,會貢獻另一邊界效應項。
這兩項會使得空氣跟鹽水交界面附近的離子被排開量變多而所得表面張力也比之前的理論所得到的要大。我們也用這理論來計算純水-鹽水交界面和鹽水-鹽水交界面附近的電解質分佈。另外,也計算了兩個不帶電的大球在電解質中的相互作用力。
第二部分我們分別從理論跟實驗上以二維系統來研究單一方向的偶極子所形成的柱狀結構。考慮偶極子之間的作用,在理論計算得到柱狀結構的寬度與長度成正比,而比值在偶極子所佔體積比很小時趨近0.17,且隨著體積比增加而增加。實驗上,我們在磁性流體薄層外加
一平行磁場,觀察得到週期性的柱狀結構。發現這些柱狀結構的寬度跟間距與所用的薄層厚度無關。其間距幾乎與其長度相等且其寬度如同理論所預測與長度成正比,不過所得到的比值比二維理論所得為高。
摘要(英) In the first part, we calculate the free energy density for inhomogeneous electrolytes based on the mean field Debye-H¨uckel theory. Derived are the contributions of (1) the differential term for the electrolyte density being slow-varying in one direction and (2) the boundary term for an electrolyte confined to one side of a planar interface. These contributions are shown to
cause the electrolyte depletion near the air-water interfaces, which makes the surface tension to increase, to be significantly larger than those predicted by previous theories. Non-uniform electrolyte densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we remark
on the interaction of two uncharged macro-spheres due to the electrolyte depletion.
In the second part, we study the columnar structure of the uniaxial dipoles in two dimension both theoretically and experimentally. The columnar width is theoretically computed to be proportional to its length by the consideration of the dipole-dipole interaction. The ratio is obtained to be 0.17 in the
case of low volume fraction and becomes larger at a larger volume fraction. In experimental study, we apply an external magnetic field parallel to the magnetic fluid film to study the structure in equilibrium. The columnar width and spacing are shown to be independent of the height. The spacing is observed to almost equal to the columnar length. The columnar width is
proportional to its length but with a larger ratio than the theoretical results.
關鍵字(中) ★ 單向偶極子
★ 非均勻電解質
關鍵字(英) ★ uniaxial dipoles
★ inhomogeneous electrolytes
論文目次 Part I. Mean-field theory for inhomogeneous electrolytes 1
1 Introduction 2
2 Mean field theory for the homogeneous electrolytes 5
2.1 Debye-H¨uckel Theory . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Linear PB equation . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Electrostatic free energy . . . . . . . . . . . . . . . . . 7
2.2 Applications of the DH theory to the inhomogeneous cases . . 8
2.2.1 Density profile near an air-water interface . . . . . . . 8
2.2.2 Surface tension . . . . . . . . . . . . . . . . . . . . . . 9
3 Mean filed theory for inhomogeneous electrolytes 11
3.1 Free energy for inhomogeneous cases . . . . . . . . . . . . . . 11
4 Numerical results and discussions 16
4.1 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Density profile near a air-water interface . . . . . . . . . . . . 17
4.3 Depletion near a water-water interface . . . . . . . . . . . . . 20
4.4 Two neighboring electrolyte solutions . . . . . . . . . . . . . . 22
4.5 Attraction between two neutral macro-spheres in electrolytes . 25
5 Conclusion 28
References 29
Part II. Columnar structure of aligned dipoles in two
dimension 32
6 Introduction 34
7 Calculation of columnar structure in two dimension 37
7.1 Dipole-dipole and chain-chain interactions . . . . . . . . . . . 37
7.2 Preferred columnar size . . . . . . . . . . . . . . . . . . . . . . 38
8 Monte Carlo Simulation 45
8.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Parameters and results . . . . . . . . . . . . . . . . . . . . . . 46
9 Apparatus and experiment 50
9.1 Material and setup . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10 Results and Discussion 56
10.1 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2 The effects of the cell thickness . . . . . . . . . . . . . . . . . 59
10.3 The columnar size and spacing . . . . . . . . . . . . . . . . . . 61
11 Conclusion 68
References 70
參考文獻 Part I.
[1] P. W. Debye and E. H¨uckel, Phys. Z. 24, 185 (1923).
[2] D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York,
1976).
[3] C. Wagner, Phys. Z. 25, 474 (1924).
[4] N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat.-fys Medd. 7, 1 (1926).
[5] L. Belloni, Phys. Rev. Lett. 57, 2026 (1986); J.-P. Hansen and I. Mc-
Donald, Theory of Simple Liquids (Academic, London, 1990); R. D.
Groot, J. Chem. Phys. 94, 5083 (1991); M. Lozada-Cassou and J. E. S.
Sanchez, Chem. Phys. Lett. 190, 202 (1992).
[6] See, e.g., J. P. Valleau, J. Chem. Phys. 95, 584 (1991); P. Linse and V.
Lobaskin, Phys. Rev. Lett. 83, 4208 (1999); J. Reˇsˇciˇc and P. Linse, J.
Chem. Phys. 114, 10131 (2001).
[7] S. Nordholm, Chem. Phys. Lett. 105, 302 (1984).
[8] M. N. Tamashiro, Y. Levin and M. C. Barbosa, Physica A. 268, 24
(1999).
[9] L. Mier-y-Teran, S. H. Suh, H. S. White and H.T. Davis, J. Chem. Phys.
92, 5087 (1990); Z. Tang, L. E. Scriven and H. T. Davis, ibid. 97, 494(1992); T. Biben, J.-P. Hansen and Y. Rosenfeld, Phys. Rev. E. 57, 3727
(1998); D. Boda, D. Henderson, R. Rowley and S. Sokolowski, J. Chem.
Phys. 111, 9382 (1999).
[10] J.-L. Barrat and J.-P. Hansen, Basic concepts for simple and complex
liquids (Cambridge University Press, London, 2003).
[11] M. C. Barbosa, M. Deserno and C. Holm, Europhys. Lett. 52, 80 (2000);
M. C. Barbosa, M. Deserno C. Holm and R. Messina, Phys. Rev. E. 69,
051401 (2004).
[12] L. Onsager and N. N. T. Samaras, J. Chem. Phys. 2, 528 (1934).
[13] A. Heydweiller, Phys. Z. 3, 329 (1902).
[14] D. Myers, Surface, Interfaces, and Colloids: Principles and Applications
(VCH Publishers, New York, 1991).
[15] Y. Levin, J. Chem. Phys. 113, 9722 (2000); Y. Levin and J. E. Flores-
Mena, Europhys. Lett. 56, 187 (2001).
[16] N. Matubayasi, H. Matsuo, K. Yamamoto, S. Yamaguchi and A.
Matuzawa, J. Colloid Interface Sci. 209, 398 (1998).
[17] B. W. Ninham and V. Yaminsky, Langmuir 13, 2097 (1997); M.
Bostr¨om, D. R . M. Williams and B. W. Ninham, ibid. 17, 4475 (2001).
[18] C.-H. Ho, H.-K Tsao and Y.-J. Sheng, J. Chem. Phys. 119, 2369 (2003).
[19] H. G and H. Weing¨artner, J. Phys. Chem. 93, 3378 (1989).
[20] R. R. Singh and K. S. Pitzer, J. Chem. Phys. 92, 6775 (1990); T.
Narayanan and K. S. Pitzer, Phys. Rev. Lett. 73, 3002 (1994); M. A.Anisimov, A. A. Povodyrev, V. D. Kulikov and J. V. Sengers, ibid. 75,
3146 (1995).
[21] M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993); Y. Levin
and M. E. Fisher, Physica A. 225, 164 (1996).
[22] E. J. W. Verwey and K. F. Niessen. Philos. Mag. 28, 435 (1939); H. H.
Girault and D. J. Schiffrin, J. Electroanal. Chem. 150, 43 (1983).
[23] T. Wandlowski, V. Marecek, K. Holub and Z. Samec, J. Phys. Chem.
93, 8204 (1989); T. Kakiuchi, J. Noguchi, M. Kotani and M. Senda, J.
Electroanal. Chem. 296, 517 (1990); T. Kakiuchi, J. Noguchi and M.
Senda, ibid. 336, 137 (1992).
[24] B. V. Derjaguin and L. D. Landau, Acta Physicochim. USSR. 14, 633
(1941); E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability
of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
[25] A. E. Larsen and D. G. Grier, Nature 385, 230 (1997).
[26] G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994); J. C.
Crocker and D. G. Grier, ibid. 77, 1897 (1996); D. G. Grier, Nature
393, 621 (1998).
[27] O. Spalla and L. Belloni, Phys. Rev. Lett. 74, 2515 (1995); B.-Y. Ha
and A. J. Liu, ibid. 79, 1289 (1997).
[28] N. Grønbech-Jensen, R. J. Mashl, R. F. Bruinsma and W. M. Gelbart,
Phys. Rev. Lett. 78, 2477 (1997).
[29] T. M. Squires and M. P. Brenner, Phys. Rev. Lett. 85, 4976 (2000)
[30] E. Allahyarov, I. D’Amico and H. L¨owen, Phys. Rev. Lett. 81, 1334
(1998).
Part II.
[1] T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).
[2] T. J. Chen, R. N. Zitter and R. Tao, Phys. Rev. Lett. 68, 2555 (1992).
[3] R. Tao and J. M. Sun, Phys. Rev. Lett. 67, 398 (1991).
[4] E. Lemaire, Y. Grasselli and G. Bossis, J. Phys. II (France) 2, 359
(1992); Y. Grasselli, G. Bossis and E. Lemaire, J. Phys. II (France) 4,
253 (1994).
[5] J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J.
Bibette and J. Richards, Phys. Rev. Lett. 74, 2828 (1995).
[6] H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers and R. E. Rosensweig,
Phys. Rev. Lett. 72, 1929 (1994).
[7] L. Zhou, W. Wen and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[8] M. Fermigier and A. P.Gast, J. Colloid Interface Sci. 154, 522 (1992).
[9] D. Wirtz and M. Fermigier, Phys. Rev. Lett. 72, 2294 (1994).
[10] S. Y. Yang, Y.H. Chao and H. E. Horng, J. Appl. Phys. 97, 093907
(2005).
[11] A. Satoh, R. W. Chantrell, S. -I. Kamiyama and G. N. Coverdale, J.
Colloid Interface Sci. 178, 620 (1996).
[12] M. Gross and S. KisKamp, Phys. Rev. Lett. 79, 2566 (1997).
[13] C. J. Chin, Yiacoumi and C. Tsouris, Langmuir, 17, 6065 (2001).
指導教授 陳培亮(Peilong Chen) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明