博碩士論文 89246004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.137.187.233
姓名 吳駿逸(Jean-Yee Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 不同製程下以Si與SiO2為起始材料所製鍍出的SiO2薄膜特性研究
(Property Research of the SiO2 Thin Films Deposited by Different Processes from Si and SiO2 as Starting Materials)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將探討與比較在不同製程與不同起始材料下所製鍍出的二氧化矽薄膜的特性。利用目前最常用的三種物理氣相沉積方法:電子槍蒸鍍、離子束濺鍍、磁控濺鍍三種製程方法,以Si與SiO2為起始材料分別製鍍SiO2薄膜,並討論離子助鍍與離子助鍍使用不同工作氣體的影響。製鍍出的薄膜分別以紫外-可見光光譜儀、傅立葉轉換紅外線光譜儀、應力量測干涉儀、原子力顯微鏡、掃描式電子顯微鏡與接觸角量測儀分析各SiO2薄膜的光學、機械、化學性質與微觀結構。
實驗結果顯示,以電子槍蒸鍍加離子助鍍時,可以得到最佳的紫外光光學特性;磁控濺鍍不加離子助鍍次之;磁控濺鍍加離子助鍍與離子束濺鍍所得到的較差。三種製程在可見光的光學性質都不錯,吸收損耗(消光係數)幾乎都可達到3x10-5以下。而離子束濺鍍得到的表面粗糙度最佳、磁控濺鍍次之,電子槍蒸鍍則較差,但輔以離子助鍍後也可以改善到1nm以下的粗糙度。由紅外線光譜的結果可以知道三種製程都可以製鍍出化學匹配比(stoichimetric)良好的SiO2薄膜,除了電子槍製程不加離子助鍍時,以Si為起始材料所製鍍出的SiO2會含有次氧化態的Si2O3;以SiO2為起始材料則會因為吸收水汽而含有Si-OH的結構。在機械特性方面,所有製程得到的SiO2薄膜皆是呈現壓應力的型態,其中以磁控濺鍍製程所得到的應力最小,離子束濺鍍次之,而電子槍蒸鍍所得的應力最大。而根據量測薄膜的接觸角可知,以離子束濺鍍所得到的薄膜其表面能最低,具有較佳之環境穩定性;以磁控濺鍍與電子槍蒸鍍的薄膜則有較大的表面能。
本研究將SiO2薄膜在三種不同製程下的性質做一完整的整理與比較,對於往後在製鍍各種濾光片或在不同狀況下需要製鍍SiO2薄膜時,可以提供一個參考,例如需要紫外光區鍍膜時則選擇電子槍蒸鍍、需要製鍍低損耗的雷射鏡時則選擇離子束濺鍍,需要低應力與塑膠基板的鍍膜則可以選擇磁控濺鍍。
摘要(英) The properties of SiO2 thin films deposited by different process and from different starting material were discussed and compared. Three processes -E-beam gun evaporation, Ion beam sputtering, and magnetron sputtering- were used to deposit SiO2 thin films, and Si and SiO2 were used as starting materials. The influences of ion beam assisted deposition (IAD) and its working gas were also discussed. The SiO2 thin films were then measured by UV-VIS spectrophotometer, FTIR, stress measurement interferometer, AFM, SEM, and contact angle measurement instrument to analyze the microstructure, optical, mechanical, and chemical properties.
The results showed that the SiO2 thin films had the best optical properties in UV region when they were deposited by E-beam gun evaporation with IAD; the properties were still good when deposited by magnetron sputtering; when deposited by ion beam sputtering, the properties were worse. The properties were very good in visible region when the SiO2 thin films were deposited by all of these three processes, and the extinction coefficients of all SiO2 thin films were smaller then 3x10-5. The roughness of the SiO2 thin films were the best when deposited by ion beam sputtering, the roughness increased when deposited by magnetron sputtering, and the roughness were the worst when deposited by E-beam gun evaporation. The results of FTIR measurement shown that all the SiO2 thin films were well stoichiometric, exclude the case of the SiO2 thin films deposited by E-Beam gun evaporation without IAD and used Si as the starting material for the Si2O3 bonding structure was observed in the composition and the case by the same process but used SiO2 as the starting material for the Si-OH bonding structure was observed. For the mechanical properties, all the SiO2 thin films showed the compressive stress, and the quantities of stress were the smallest when deposited by magnetron sputtering, those were bigger when deposited by ion beam sputtering, and those were the biggest when deposited by E-beam gun evaporation. From the contact angle measurement results, the SiO2 thin films deposited by ion beam sputtering had the smallest surface energy, which meant that the films were more durable, and the other SiO2 thin films were bigger.
In this research, we discussed and compared the properties of SiO2 thin films deposited by different processes in a completed arrangement. It gives good references for deposit SiO2 thin film in different conditions or for special need. For instance, use E-beam gun evaporation to deposit SiO2 thin films for UV coating; use ion beam sputtering to deposit SiO2 thin films for ultra-low loss laser mirror; use magnetron sputtering to deposit SiO2 thin films for low stress or coating on plastic substrate.
論文目次 中文摘要………………………………………………………………………….…………..I
英文摘要………………………………………………………………………….…………..II
致謝詞………………………………………………………………………………………..III
目錄………………………………………………………………………….…………...…..IV
圖目錄………………………………………………………………………….…………….VI
表目錄………………………………………………………………………….…………..VIII
第一章 緒論………………………………………………………………………….……….1
1-1 研究動機………………………………………………………………………………….1
1-2 文獻回顧………………………………………………………………………………….3
1-3 論文架構………………………………………………………………………………….5
第二章 基本理論……………………………………………………………………………..6
2-1 製程方法………………………………………………………………………………….6
2-1-1 電子槍蒸鍍…………………………………………………………………………….8
2-1-2 離子束濺鍍…………………………………………………………………………...10
2-1-3 磁控濺鍍……………………………………………………………………………...13
2-2 起始材料………………………………………………………………………………..14
2-3 離子助鍍………………………………………………………………………………..15
2-4 分析方法………………………………………………………………………………..17
2-4-1 包絡法………………………………………………………………………………...17
2-4-2 FTIR吸收光譜分析…………………………………………………………………..19
2-4-3 Twyman-Green干涉式應力量測儀…………………………………………………..22
第三章 實驗架構……………………………………………………………………………24
3-1 鍍膜設備介紹…………………………………………………………………………...24
3-2起始材料與基板的選擇…………………………………………………………………26
3-3分析儀器介紹……………………………………………………………………………27
第四章 實驗結果與討論……………………………………………………………………28
4-1電子槍蒸鍍………………………………………………………………………………29
4-1-1各項特性結果列表…………………………………………………………………….30
4-1-2 光譜結果與分析……………………………………………………………………...31
4-1-3 應力分析……………………………………………………………………………...41
4-1-4 表面粗糙度與表面輪廓分析………………………………………………………...42
4-1-5 接觸角分析…………………………………………………………………………..47
4-2 射頻離子束濺鍍……………………………………………………………………….48
4-2-1 各項特性結果列表…………………………………………………………………..50
4-2-2 光譜結果與分析……………………………………………………………………..50
4-2-3 應力分析……………………………………………………………………………..60
4-2-4 表面粗糙度與表面輪廓分析………………………………………………………...62
4-2-5 接觸角分析…………………………………………………………………………...67
4-3 磁控濺鍍………………………………………………………………………………..68
4-3-1 各項特性結果列表…………………………………………………………………...69
4-3-2 光譜結果與分析……………………………………………………………………...70
4-3-3 應力分析……………………………………………………………………………...74
4-3-4 表面粗糙度與表面輪廓分析………………………………………………………...75
4-3-5 接觸角分析…………………………………………………………………………..76
第五章 結論…………………………………………………………………………………77
5-1 製程設備的比較………………………………………………………………………..77
5-2 起始材料的比較………………………………………………………………………..79
5-3 離子助鍍的比較………………………………………………………………………..80
5-4 總結……………………………………………………………………………………..82
參考文獻……………………………………………………………………………………..84
參考文獻 1. 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 第四版, pp. 333-341, 2004.
2. Pulker, Unaxis magazine
3. Hubert Selhofer, Elmar Ritter, and Robert Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials”, Applied Optics, 41, PP. 756-762, 2002.
4. Friedrich Waibel, Elmar Ritter, and Robert Linsbod, “Properties of TiOx films prepared by electronbeam evaporation of titanium and titanium suboxides”, Applied Optics, 42, pp. 4590-4593, 2003.
5. 真空技術與應用, 第五章, 精密儀器發展中心, pp.78-79, 2001.
6. C. C. Lee and D. J. Jan, “Optical Properties and Deposition Rate of Sputtered Ta2O5 Films Deposited by Ion-beam Oxidation”, Thin Solid Films, 483/1-2, pp.130-135, 2005.
7. John R. McNeil, Alan C. Barron, S. R. Wilson, and W. C. Herrmann, Jr. “Ion-assisted deposition of optical thin films:low energy vs high energy bombardment”, Applied Optics, 23, pp. 552-559, 1984.
8. M.S. Haque, H.A. Naseem*, W.D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability”, Thin Solid Films, 308–309, pp. 68–73, 1997.
9. M. S. Haque, H. A. Naseem, and W. D. Brown, “Residual stress behavior of thin plasma-enhanced chemical vapor deposited silicon dioxide films as a function of storage time”, J. Appl. Phys., 81, pp. 329-3133, 1997.
10. F. Hamelmann, A. Aschentrup, A. Brechling, U. Heinzmann, A. Gushterov, A. Szekeres, S. Simeonov, “Plasma-assisted deposition of thin silicon oxide films in a remote PECVD reactor and characterization of films produced under different conditions”, Vacuum, 75, pp. 307-312, 2004.
11. 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 第四版, pp. 493, 2004.
12. G. Hass and J. B. Ramsey, “Vacuum deposition of dielectric and semiconductor films by a CO2 laser”, Applied Optics, 8, pp. 1115-1118, 1969.
13. A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, “Effect of Ultraviolet Irradiation on the Optical Properties of Silicon Oxide Films”, Applied Optics, 8, pp. 971-976, 1965.
14. J. T. Cox, G. Hass, and J. B. Ramsey, Journal of Physics (France), 25, pp. 250, 1964.
15. Frank Rainer, W. Howard Lowdermilk, David Milam, Charles K. Carniglia, Trudy Tuttle Hart, and Terri L. Lichtenstein, “Materials for optical coatings in the ultraviolet”, Applied Optics, 24, pp. 496-500, 1985.
16. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior”, J. Appl. Phys., 78, pp. 962-969, 1995.
17. K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO2 layers. Long-term evolution”, Applied Optics, 35, pp. 5067-5072, 1996.
18. H. R. Kaufman and P. D. Reader, "Experimental Performance of Ion Rockets Employing Electron Bombardment Ion Sources," Am. Rocket Soc. Paper 1374-60, 1960.
19. E. G. Spencer and P. H. Schmidt, "Ion Beam Techniques for Device Fabrication," J. Vac. Sci. Technol., 8, pp. 55, 1971.
20. R. G. Wilson and G. R. Brewer, “Ion Beams with Applications to Ion Implantation”, Wiley-Interscience, New York, Chap.4, 1973.
21. R. N. Castellano, "Reactive Ion Beam Sputtering of Thin Films of Lead, Zirconium and Titanium," Thin Solid Films, 46, pp. 213-221, 1977.
22. V. Sanders, "High Precision Reflectivity Measurement Technique for Low-Loss Laser Mirrors," Appl. Opt. 16, pp. 19-20, 1977.
23. H. R. Kaufman, "Technology of Ion Beam Sources Used in Sputtering," J. Vac. Sci. Technol. 15, pp. 272-276, 1978.
24. D. T. Wei and A. W. Louderback, "Method for Fabricating Multi-Layer Optical Films," U.S. Patent 4,142,958, assigned to Litton Systems, 1979.
25. David T. Wei, “Ion beam interference coating for ultralow optical loss”, Applied Optics, 28, pp. 2813-2816, 1989.
26. Koji Nomura and Hisahito Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation”, J. Appt. Phys., 71, pp. 1469-1476, 1992.
27. A. Tabata, N. Matsuno, Y. Suzuoki and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films, 289, pp. 84-89, 1996.
28. G. V. Jorgenson and G. K. Wehner, “ Sputtering Studies of Insulators by means of Langmuir Probes”, J. Appl. Phys., 36, pp. 2672-2674, 1965.
29. J. L. Vossen, “Control of film properties by rf-sputtering techniques”, J. Vac. Sci Technol., 8, pp. 12-30, 1971.
30. Rung-Ywan Tsai, Chia Shy Chang, Cheng Wei Chu, Tzushin Chen, Fred Dai, Doris Lin, ShaoFeng Yan, and Albert Chang, “Thermally stable narrow-bandpass filter prepared by reactive ion-assisted sputtering”, Applied Optics, 40, pp. 1593-1598, 2001.
31. R. P. Howson, N. Danson, G. W. Hall, “ Reactive magnetron sputtering of silicon to produce silicon oxide”, Nuclear Instruments and Methods in Physics Research B, 121, pp. 90-95, 1997.
32. O. D. Vol’pyan and P. P. Yakovlev, Yu. A. Obod, “Investigation of SiO2 optical films produced by reactive ac magnetron sputtering”, J. Opt. Technol., 71, pp. 487-490, 2004.
33. F. Richter, H. Kupfer, P. Schlott, T. Gessner, C. Kaufmann, “Optical properties and mechanical stress in SiO2/Nb2O5 multilayers”, Thin Solid Films, 389, pp. 278-283, 2001.
34. H. Seifarth, J.U. Schmidt, R. Grotzschel, M. Klimenkov, “Phenomenological model of reactive r.f.-magnetron sputtering of Si in Ar/O2 atmosphere for the prediction of SiO x thin film stoichiometry from process parameters”, Thin Solid Films, 389, pp. 108-115, 2001.
35. A.F. Jankowski, J.P. Hayes, T.E. Felter, C. Evans, A.J. Nelson, “Sputter deposition of silicon–oxide coatings”, Thin Solid Films, 420 –421, pp. 43-46, 2002.
36. Le-Nian He, Jin Xu, “Properties of amorphous SiO2 films prepared by reactive RF magnetron sputtering method”, Vacuum, 68, pp. 197-202, 2003.
37. Hidehiko Yoda, Kazuo Shiraishi, Yuji Hiratani, and Osamu Hanaizumi, “a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters”, Applied Optics, 43, pp. 3548-3554, 2004.
38. H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium–oxygen phases,” Applied Optics 15, pp. 2986-2991, 1976.
39. Hubert Selhofer, Elmar Ritter, and Robert Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials”, Applied Optics, 41, pp. 756-762, 2002.
40. Friedrich Waibel, Elmar Ritter, and Robert Linsbod, “Properties of TiOx films prepared by electron beam evaporation of titanium and titanium suboxides”, Applied Optics, 42, pp, 4590-4593, 2003.
41. 郭倩丞, 以離子助鍍法研製帶通率光片, 碩士論文, 1998.
42. Hans K. Pulker, “Optical coatings deposited by ion and plasma PVD processes”, Surface and Coatings Technology, 112, pp. 250-256, 1999.
43. Marco Alvisi, Giorgio De Nunzio, Massimo Di Giulio, Maria Cristina Ferrara, Maria Rita Perrone, Lucia Protopapa, and Lorenzo Vasanelli, “Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation”, Applied Optics, 38, pp. 1237-1243, 1999.
44. Donghwan Kim, Younggun Han, Jun-Sik Cho, Seok-Keun Koh, “Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films, 377-378, pp. 81-86, 2000.
45. W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods”, J. Vac. Sci Technol., 14, pp. 1064-1081, 1977.
46. Jolanta E. Klemberg-Sapieha, Jo¨ rg Oberste-Berghaus, Ludvik Martinu, Richard Blacker, Ian Stevenson, George Sadkhin, Dale Morton, Scott McEldowney, Robert Klinger, Phil J. Martin, Nadia Court, Svetlana Dligatch, Mark Gross, and Roger P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study”, Applied Optics, 43, pp. 2670-2679, 2004.
47. 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 第四版, pp. 282-313, 2004.
48. Yao Xu, Bing Zhang, Wen Hao Fan, Dong Wu, Yu Han Sun, “Sol–gel broadband anti-reflective single-layer silica films with high laser damage threshold”, Thin Solid Films, 440, pp. 180-183, 2003.
49. J.A. Caldero´n-Guille´n, L.M. Avile´s-Arellano, J.F. Pe´rez-Robles, J. Gonza´lez-Herna´ndez, E. Ramos-Ramı´rez, “Dense silica-based coatings prepared from colloidal silica”, Surface & Coatings Technology, 190, pp. 110-114,2005.
50. Brian D. Jackson, Peter R. Herman, “Vacuum–ultraviolet pulsed-laser deposition of silicon dioxide thin films”, Applied Surface Science, 127–129, pp. 595-600, 1998.
51. A.C. Ford, T. Tepper, C.A. Ross, “Reactive pulsed laser deposition of silica and doped silica thin films”, Thin Solid Films, 437, pp. 211–216, 2003.
52. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films”, Applied Optics, 22, pp. 179-185, 1983.
53. Hansjorg Niederwald, “ Low-temperature deposition of optical coatings using ion assistance”, Thin Solid Films, 377-378, pp. 21-26, 2000.
54. J. C. Manifacier, J. Gasiot, J. P. Filland, “Simple method for determination of optical constant n, k and thickness of weekly absorbing thin films”, J. Phy. E. : Sci. Inst., 9, pp. 1002-1004, 1976.
55. R. Swanepoel, “ Determination of the thickness and optical constant of amorphous silicon”, J. Phy. E. : Sci. Inst., 16, pp. 1214-1222, 1983.
56. Essential Macleod, ver. 8.13, Thin Film Center Inc., http://www.thinfilmcenter.com.
57. H. K. Pulker, “Characterization of optical thin films”, Applied Optics, 18, pp. 1969-1977, 1979.
58. S. Laux and W. Richter, “ Packing-density calculation of thin fluoride films from infrared transmission spectra”, Applied Optics, 35, pp. 97-101, 1996.
59. A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, “Effect of Ultraviolet Irradiation on the Optical Properties of Silicon Oxide Films”, Applied Optics, 4, pp. 971-976, 1965.
60. I. P. Lisovskii, V. G. Litovchenko, V. G. Lozinskii and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure”, Thin Solid Films, 213, pp. 164-169, 1992.
61. A. Brunet-Bruneau, J. Rivory, B. Rafin, J. Y. Robic, and P. Chaton, ”Infrared ellipsometry study of evaporated SiO2 films: Matrix densification, porosity, water sorption”, J. Appl. Phys., 82, pp. 1330-1335, 1997.
62. C. L. Tien, C. C. Lee and C. C. Jaing, “The Measurements of Thin Films Stress by Using Phase Shifting Interferometry”, J. of Modern Optics, 47,pp. 839-849, (2000).
63. C. C. Lee, J. Y. Wu, “Effect of the working gas of the ion-assisted source on the optical and mechanical properties of SiO2 films deposited by dual ion beam sputtering with Si and SiO2 as the starting materials”, Applied Optics, 45, pp. 3510-3515, 2006.
64. 徐進成, 雙離子束濺鍍光學薄膜之研究, 博士論文, 1997.
65. 詹德均, 以氧離子束輔助磁控濺鍍光學薄膜之研究, 博士論文, 2005.
66. 邱繼暐, 直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板, 碩士論文, 2004.
67. 王宣文, 以電漿表面處理法在塑膠基板上製鍍抗反射膜, 碩士論文, 2005.
68. 劉旻忠, 193nm 深紫外光學薄膜之研究, 博士論文, 2005.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2006-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明